已知x,y为正实数,且4/(x+1)+1/(2y+1)=1,则x+2y的最小值为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:01:19
已知x,y为正实数,且4/(x+1)+1/(2y+1)=1,则x+2y的最小值为
xN0_nMD"%:FCCTgP$@#PЂ8u:pSN97)R<\~X,m5lKD;-$;hr1J g;\kpOe}5)?em86`K!]1s:urE#RwE^}톯o? >/Ԯ%謓adҥ7LjI[zw{.k;OBFx,wDb'9 669~o6POOz&F}ݸ

已知x,y为正实数,且4/(x+1)+1/(2y+1)=1,则x+2y的最小值为
已知x,y为正实数,且4/(x+1)+1/(2y+1)=1,则x+2y的最小值为

已知x,y为正实数,且4/(x+1)+1/(2y+1)=1,则x+2y的最小值为
x+2y
=(x+1)+(2y+1)-2
=[(x+1)+(2y+1)][4/(x+1)+1/(2y+1)]-2
=4+(x+1)/(2y+1)+4(2y+1)/(x+1)+1-2
>=2根号[(x+1)/(2y+1)*4(2y+1)/(x+1)]+3
=2*2+3
=7
即最小值是:7

4/(x+1)+1/(2y+1)=1
1/(2y+1) = (x-3)/(x+1)
2y+1= (x+1)/(x-3)
y = 2/(x-3)
S=x+2y
=x + 4/(x-3)
S' = 1-4/(x-3)^2 =0
x^2-6x+5=0
x=1 or 5
S''=8/(x-3)^3
S''(5)>0 (mn)
x=5, y=1
minS = 5+2 =7