求函数f(x)=3x^2/(3x-2) (x>2/3)的单调区间,并求出最小值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:31:21
求函数f(x)=3x^2/(3x-2) (x>2/3)的单调区间,并求出最小值.
x){igS7iThWkWi*hTk>w O{vEm`=ixi="}_`gCE7aj͈ iiB$Mb(0Ҩh@6XѣYe yTI-gӷ

求函数f(x)=3x^2/(3x-2) (x>2/3)的单调区间,并求出最小值.
求函数f(x)=3x^2/(3x-2) (x>2/3)的单调区间,并求出最小值.

求函数f(x)=3x^2/(3x-2) (x>2/3)的单调区间,并求出最小值.
f(x)=3x^2/(3x-2)
=(1/3)[(3x+2)(3x-2)+4]/(3x-2)
=(1/3)(3x+2)+(4/3)/(3x-2)
=(1/3)(3x-2)+(4/3)/(3x-2)+4/3
>=2√(1/3)(4/3)+4/3=8/3
(1/3)(3x-2)=(4/3)/(3x-2)时,取得最小值
(3x-2)^2=4,x>2/3
x=4/3时有最小值
(2/3,4/3)减区间,(4/3,+∞)增区间