急 lim( 根号下2n平方+1 减 根号下n平方+1 )/(n+1) 求极限还有 另外一题 :lim (n+1除以n-1)的n 次方 、 求极限.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 12:44:59
急 lim( 根号下2n平方+1 减 根号下n平方+1 )/(n+1) 求极限还有 另外一题 :lim (n+1除以n-1)的n 次方 、 求极限.
xnG_ej){%ߴoZWYZMeSB%©ȑ]ݫB,5PKs9?41̇ "ud)y Ԯ<!1H{Zt&]EϭDw6boSb@xj+s%Zsŗ_XENG |53\r.wu?z VХA*p~qSec$U<.t20ş?!/CC &w <~9,E32=D@9=1Q/y+K2ъٟ9}vPj/;A#} _.3bX 뺨Ƣ& J.,Esb^U3/ ZVшS2rDQaM΋Q=S*2c Zݪ%ƄScbTP+ׅlXn o?\dfM35E-fMأF١4yf|2-1N`, ! 㸱#ws;bֆ7!6=AAi ߎKBZpͳk3JtǫՏ(dXyL?L+fi%;Gxܘ4H-

急 lim( 根号下2n平方+1 减 根号下n平方+1 )/(n+1) 求极限还有 另外一题 :lim (n+1除以n-1)的n 次方 、 求极限.
急 lim( 根号下2n平方+1 减 根号下n平方+1 )/(n+1) 求极限
还有 另外一题 :lim (n+1除以n-1)的n 次方 、 求极限.

急 lim( 根号下2n平方+1 减 根号下n平方+1 )/(n+1) 求极限还有 另外一题 :lim (n+1除以n-1)的n 次方 、 求极限.
你可以用罗必塔法则进行求解
【sqrt(2n^2+1)-sqrt(n^2+1)】/(n+1)= sqrt【(2n^2+1) / (n+1)^2 】- sqrt 【(n^2+1)/(n+1)^2】 = sqrt2 - sqrt1 = sqrt2 - 1 即是根号2 - 1
下一个题一样的解法,我就不写了,写起来挺麻烦的!

应该还有n—>无穷吧
利用第二种重要极限,结果为e
随便找本参考书都有此类例题

第二题的答案是1

你可以用罗必塔法则进行求解
sqrt4n^2+1/ sqrtn^2+1=sqrt (4n^2+1)/(n^2+1)=sqrt (8n/2n)=sqrt (4)=2
下一个题一样的解法.下面自己写哦

见图。

1、lim(√[(2n)^2+1]-√[(n)^2+1])/(n+1)=lim([(2n)^2+1]-[(n)^2+1])/{(√[(2n)^2+1]+√[(n)^2+1])(n+1)}=lim(3n^2)/{(√[(2n)^2+1]+√[(n)^2+1])(n+1)}=lim3/{(√[4+1/n^2]+√[1+1/n^2])(1+1/n)}=3/{[√(4+0)+√(1+0)](1+0)}=1...

全部展开

1、lim(√[(2n)^2+1]-√[(n)^2+1])/(n+1)=lim([(2n)^2+1]-[(n)^2+1])/{(√[(2n)^2+1]+√[(n)^2+1])(n+1)}=lim(3n^2)/{(√[(2n)^2+1]+√[(n)^2+1])(n+1)}=lim3/{(√[4+1/n^2]+√[1+1/n^2])(1+1/n)}=3/{[√(4+0)+√(1+0)](1+0)}=1
2、lim[(n+1)/(n-1)]^n=lim{[1+2/(n-1)]^(n-1)}*[1+2/(n-1)]=lim{[1+1/((n-1)/2)]^[(n-1)/2]}^2*[1+2/(n-1)]=lim{[1+1/((n-1)/2)]^[(n-1)/2]}^2*lim[1+2/(n-1)]
后边的极限 lim[1+2/(n-1)]=1
前边的极限 lim{[1+1/((n-1)/2)]^[(n-1)/2]}^2=[lim(1+1/x)^x]^2=e^2
因此极限 lim[(n+1)/(n-1)]^n=e^2

收起