求函数f(x)=根号(x^4-3x^2+13)-根号(x^4-x^2+1)的最大值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:32:20
求函数f(x)=根号(x^4-3x^2+13)-根号(x^4-x^2+1)的最大值
xV]oV+&L ڿ%vM iII]@2XPѦ%96W=6R]M}y?{H/NlAI0Jh`j-oX(9UڤeΈj$~%׉y]WRqHH Цʚ)~S& ]JP "rX$%.fҏX.< =pI6&Fi#;9@ ahfF->\(jê^JAE^}% *[G|h8>/s!|‡bq0Nm٩{ucAT6Z]Q-Ϟ)m+pn껤$mׯv<ۜj^׿ 򙚐[njwP{>f4%wD"?yjonj:(ɇhgD{&{TDy=C쮩ڣWPGlsn{tiG{8DLKx OE䫩L#je0hf6I=ٶl,5t_xc':Yv`c<ΘzL

求函数f(x)=根号(x^4-3x^2+13)-根号(x^4-x^2+1)的最大值
求函数f(x)=根号(x^4-3x^2+13)-根号(x^4-x^2+1)的最大值

求函数f(x)=根号(x^4-3x^2+13)-根号(x^4-x^2+1)的最大值
f(x)=根号(x^4-3x^2+13)-根号(x^4-x^2+1) 令x^2=t
则原式=根号(t^2-3t+13)-根号(t^2-t+1)
=根号[(t-3/2)^2+43/4]-根号[(t-1/2)^2+3/4]
=根号[(t-3/2)^2+(0-根号43/2)^2]-根号[(t-1/2)^2+(0-根号3/2)^2]
###附注:(0-根号43/2)^2=(-根号43/2)^2=43/4,(0-根号3/2)^2=(-根号3/2)^2=3/4 ###
式中“根号[(t-3/2)^2+(0-根号43/2)^2] “可表示为点(t,0)与点(3/2,根号43/2)的距离;
根号“[(t-1/2)^2+(0-根号3/2)^2] “ 可表示为点(t,0)与点(1/2,根号3/2)的距离.
那么点(t,0)、点(3/2,根号43/2)、点(1/2,根号3/2)可看做是三角形的三个顶点.
三角形两边之差小于第三边,
所以根号[(t-3/2)^2+(0-根号43/2)^2]-根号[(t-1/2)^2+(0-根号3/2)^2]小于点(3/2,根号43/2)与点(1/2,根号3/2)的距离.即小于跟号[(3/2-1/2)^2+(根号43/2-根号3/2)^2]=(25-根号129)/2
所以求得(25-根号129)/2是原式的最大值.
补充:那么t=?时,能取得这个最大值呢?
点(3/2,根号43/2)与点(1/2,根号3/2)连接所得的
直线表达式是:y=[(根号43-根号3)/2]x-(根号43-3倍的根号3)/4
它与横坐标轴的交点是(17-根号129)/40,0),这一点就是使原式获得最大值的(t,0)点.
##因为这时这三个顶点在一条直线上,两边之差等于第三边##
“强调” 在坐标轴上把这三个点,三角形,答题描出来,会一目了然.

令t=x²
f(x)=g(t)=根号(t²-3t+13)-根号(t²-t+1)
=根号[(t-3/2)²+43/4]-根号[(t-1/2)²+3/4]
也就是求点(t,0)到点A(3/2,根号43/2),和点B(1/2,根号3/2)距离差的最大值。
三角形两边之差小于第三边,所以取最大值时,上述三点共线,最大值是AB...

全部展开

令t=x²
f(x)=g(t)=根号(t²-3t+13)-根号(t²-t+1)
=根号[(t-3/2)²+43/4]-根号[(t-1/2)²+3/4]
也就是求点(t,0)到点A(3/2,根号43/2),和点B(1/2,根号3/2)距离差的最大值。
三角形两边之差小于第三边,所以取最大值时,上述三点共线,最大值是AB距离,自己求吧,再验证t>=0即可。。。
那啥,结果比较复杂,你确定没抄错题?

收起

f(x)={√(x^2-3/2)^2-9/4+13}-[√﹙x^2-1/2)^2+1-1/4], x^2=1/2,√[﹙x^2-1/2﹚^2+1-1/4]≥√3/2,
√[﹙x^2-3/2﹚^2+10+3/4]≥√﹙,10+3/4﹚,x^2=3/2,;
∴f﹙x﹚的最大值是[√﹙11+3/4﹚]-√3/2,