一个数各个数位上的和等于12,它的个位数字比十位上的数字小2,若把它的百位数字和个位数字互换,所得数比(接上)原数小99,求原数(写过程)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 15:11:55
一个数各个数位上的和等于12,它的个位数字比十位上的数字小2,若把它的百位数字和个位数字互换,所得数比(接上)原数小99,求原数(写过程)
一个数各个数位上的和等于12,它的个位数字比十位上的数字小2,若把它的百位数字和个位数字互换,所得数比
(接上)原数小99,求原数(写过程)
一个数各个数位上的和等于12,它的个位数字比十位上的数字小2,若把它的百位数字和个位数字互换,所得数比(接上)原数小99,求原数(写过程)
设十位数是X 那么个位数是X-2 百位数是12-(X+X-2)=14-2X
原数是100(14-2X)+10X+X-2=1398-189X
后来的数字是100(X-2)+10X+14-2X=108X-186
1398-189X-108X+186=99
297X=1485
X=5
所以十位数是5 各位是3 百位是4
原数是453
设百、十、个位分别是x、y、z,列方程组
x+y+z=12
y=z+2
100x+z-100z-x=99
解得x=4,y=5,z=3
这个数是453
假设百十个位数分别为abc
c=b-2
依题意原三位数为100a+10b+b-2=100a+11b-2
调换后的三位数为100(b-2)+10b+a=110b+a-200
新数=原数-99
则 100a+11b-101=110b+a-200
99a+99=99b
a+1=b
a=b-1
a+b+c=12
所以b-1+b...
全部展开
假设百十个位数分别为abc
c=b-2
依题意原三位数为100a+10b+b-2=100a+11b-2
调换后的三位数为100(b-2)+10b+a=110b+a-200
新数=原数-99
则 100a+11b-101=110b+a-200
99a+99=99b
a+1=b
a=b-1
a+b+c=12
所以b-1+b+b-2=3b-3=12
b=5
a=4
c=3
原数为453
希望回答对你有用
收起