如图,已知AB平行DE,BF,EF平分角ABC与角CED,若角BCE=140度,求角BFE的度数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 06:54:29
如图,已知AB平行DE,BF,EF平分角ABC与角CED,若角BCE=140度,求角BFE的度数
如图,已知AB平行DE,BF,EF平分角ABC与角CED,若角BCE=140度,求角BFE的度数
如图,已知AB平行DE,BF,EF平分角ABC与角CED,若角BCE=140度,求角BFE的度数
如图,过点C作CP∥AB,则∠BCP=∠ABC,∠ECP=∠CED,
∴∠ABC+∠CED=∠BCP+∠ECP=∠BCE=140°;
又∵BF,EF分别平分∠ABC,∠CED,
∴∠ABF=$\frac{1}{2}$∠ABC,∠DEF=$\frac{1}{2}$∠DEC;
∴∠ABF+∠DEF=$\frac{1}{2}$(∠ABC+∠DEC)=70°,
过点F作FM∥DE,则∠BFM=∠ABF,∠MFE=∠DEF,
∴∠BFE=∠BFM+∠MFE=∠ABF+∠DEF=70°.
你的图呢?
答:角BFE是110°。
计算步骤如下:
过F点画一条直线FG平行于AB,则
角ABF=角BFG=角CBF,角EFG=角DEF=角CEF
又因四边形BCEF的内角和=360°,且角BCE=140°,所以
角BFE+角FEC+角ECB+角CBF=360°
(角BFG+角GFE)+角FEC+140°+角CBF=360°
2角BFG+2角GFE=...
全部展开
答:角BFE是110°。
计算步骤如下:
过F点画一条直线FG平行于AB,则
角ABF=角BFG=角CBF,角EFG=角DEF=角CEF
又因四边形BCEF的内角和=360°,且角BCE=140°,所以
角BFE+角FEC+角ECB+角CBF=360°
(角BFG+角GFE)+角FEC+140°+角CBF=360°
2角BFG+2角GFE=220°
角BFG+角GFE=110°
收起
过C点做条直线CG平行于AB,由AB平行CG平行DE,可得到角ABC加角BCG=180°,角GCE加角CED=180°,而根据平分角性质,得ABF=角CBF,角CEF=角FED,BCE=140°,所以,角ABC+角BCG=角GCE+角CED=180°,所以角ABC+角BCG+角GCE+角CED=360°,所以角ABC+角CED=360-140=220°,角CBF+角CEF=220/2
11...
全部展开
过C点做条直线CG平行于AB,由AB平行CG平行DE,可得到角ABC加角BCG=180°,角GCE加角CED=180°,而根据平分角性质,得ABF=角CBF,角CEF=角FED,BCE=140°,所以,角ABC+角BCG=角GCE+角CED=180°,所以角ABC+角BCG+角GCE+角CED=360°,所以角ABC+角CED=360-140=220°,角CBF+角CEF=220/2
110°,四边形BCEF内角和是360°,所以角BFE=360-140-110=110°
收起
=70
如图,过点C作CP∥AB,则∠BCP=∠ABC,∠ECP=∠CED,
∴∠ABC+∠CED=∠BCP+∠ECP=∠BCE=140°;
又∵BF,EF分别平分∠ABC,∠CED,
∴∠ABF= 2分之一∠ABC,∠DEF=2分之一 ∠DEC;
∴∠ABF+∠DEF= 2分之一(∠ABC+∠DEC)=70°,
过点F作FM∥DE,则∠BFM=∠ABF,∠MFE=...
全部展开
如图,过点C作CP∥AB,则∠BCP=∠ABC,∠ECP=∠CED,
∴∠ABC+∠CED=∠BCP+∠ECP=∠BCE=140°;
又∵BF,EF分别平分∠ABC,∠CED,
∴∠ABF= 2分之一∠ABC,∠DEF=2分之一 ∠DEC;
∴∠ABF+∠DEF= 2分之一(∠ABC+∠DEC)=70°,
过点F作FM∥DE,则∠BFM=∠ABF,∠MFE=∠DEF,
∴∠BFE=∠BFM+∠MFE=∠ABF+∠DEF=70°.
收起
如图,过点C作CP∥AB,则∠BCP=∠ABC,∠ECP=∠CED,
∴∠CED,
∴∠ABF= ∠ABC,∠DEF= ∠DEC;
∴∠ABF+∠DEF= (∠ABC+∠DEC)=70°,
过点F作FM∥DE,则∠BFM=∠ABF,∠MFE=∠DEF,
∠BFE=∠BFM+∠MFE=∠ABF+∠DEF=70°.
如图,过点C作CP∥AB,则∠BCP=∠ABC,∠ECP=∠CED,
∴∠ABC+∠CED=∠BCP+∠ECP=∠BCE=140°;
又∵BF,EF分别平分∠ABC,∠CED,
∴∠ABF=$\frac{1}{2}$∠ABC,∠DEF=$\frac{1}{2}$∠DEC;
∴∠ABF+∠DEF=$\frac{1}{2}$(∠ABC+∠DEC)=70°,
过点...
全部展开
如图,过点C作CP∥AB,则∠BCP=∠ABC,∠ECP=∠CED,
∴∠ABC+∠CED=∠BCP+∠ECP=∠BCE=140°;
又∵BF,EF分别平分∠ABC,∠CED,
∴∠ABF=$\frac{1}{2}$∠ABC,∠DEF=$\frac{1}{2}$∠DEC;
∴∠ABF+∠DEF=$\frac{1}{2}$(∠ABC+∠DEC)=70°,
过点F作FM∥DE,则∠BFM=∠ABF,∠MFE=∠DEF,
∴∠BFE=∠BFM+∠MFE=∠ABF+∠DEF=70°.
收起
如图,过点C作CP∥AB,则∠BCP=∠ABC,∠ECP=∠CED,
∴∠ABC+∠CED=∠BCP+∠ECP=∠BCE=140°;
∵BF,EF分别平分∠ABC,∠CED,
∴∠ABF=$\frac{1}{2}$∠ABC,∠DEF=$\frac{1}{2}$∠DEC;
∴∠ABF+∠DEF=(∠ABC+∠DEC)=70°,
过点F作FM∥DE,则∠BFM=...
全部展开
如图,过点C作CP∥AB,则∠BCP=∠ABC,∠ECP=∠CED,
∴∠ABC+∠CED=∠BCP+∠ECP=∠BCE=140°;
∵BF,EF分别平分∠ABC,∠CED,
∴∠ABF=$\frac{1}{2}$∠ABC,∠DEF=$\frac{1}{2}$∠DEC;
∴∠ABF+∠DEF=(∠ABC+∠DEC)=70°,
过点F作FM∥DE,则∠BFM=∠ABF,∠MFE=∠DEF,
∴∠BFE=∠BFM+∠MFE=∠ABF+∠DEF=70°.
收起