对一切实数x,不等式ax^2+4x+a>1-2x^2总成立,求a的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 00:21:47
xSaoP+&K"m%C}qߨk,v(lqVbk풶jiq/-9V{{9T̳Ua%?e]
\C)2Dn7u :'|}EOhWLrZ/W*0u-`~AGiVWi
>*{瞣.[R?LFqpU0`~#ٍr669
r<"V
CaoOXu=xO謂S'h7(ckRȿ60RNXv֢Me蜓g;12|,&g _ .˖X.\aId>u7ø ,#J8r5<] mYvSht3ƶ@&$Qa[6o"].mKH1vCgI f✤vRfcKЇ1
vsa`z;U050ƉaD]^
对一切实数x,不等式ax^2+4x+a>1-2x^2总成立,求a的取值范围
对一切实数x,不等式ax^2+4x+a>1-2x^2总成立,求a的取值范围
对一切实数x,不等式ax^2+4x+a>1-2x^2总成立,求a的取值范围
不等式ax²+4x+a>1-2x²,变形得到:(a+2)x²+4x+a-1>0
构造二次函数y=(a+2)x²+4x+a-1,由(a+2)x²+4x+a-1>0知
该函数开口向上,且与x轴无交点,
于是有一次项系数(a+2)>0,即a>-2 同时,判别式△=16-4(a+2)(a-1)<0
解不等式16-4(a+2)(a-1)<0得:a<-3或a>2
因此,a的取值范围为a>2
原式可换为 (a+2)x^2+4x+a-1恒大于零。.即要求a+2>0.代尔塔<0.即16-4(a+2)(a-1)<0
ax^2+4x+a>1-2x^2
即ax^2+4x+a+2x^2-1>0总成立
(a+2)x²+4x+(a-1)>0
a+2>0
⊿<0(开口向上,与x轴无交点)
综上a>2
(a+2)x²+4x+a-1>0
一般讨论
a+2=0 一次成立
则要求a>-2
16-4(a+2)(a-1)<0 a>2或a<3
解得a>2 要写区间或集合否则不得分