数学问题:设椭圆x^2/6+y^2/2=1和双曲线(x^2/3)-y^2=1的公共焦点分别是F1,F21,设椭圆x^2/6+y^2/2=1和双曲线(x^2/3)-y^2=1的公共焦点分别是F1,F2,P是两曲线的一个交点, 则cos∠F1PF2等于(B) A,1/4 B,1/3 C,2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 16:49:08
数学问题:设椭圆x^2/6+y^2/2=1和双曲线(x^2/3)-y^2=1的公共焦点分别是F1,F21,设椭圆x^2/6+y^2/2=1和双曲线(x^2/3)-y^2=1的公共焦点分别是F1,F2,P是两曲线的一个交点, 则cos∠F1PF2等于(B)  A,1/4       B,1/3       C,2
xV[OG+~xˎ/I6P-ɾ#'rTCSԴx$66L\ 0!!,5.O|3^$jR39;9g[35vR:y>w:V7Y%MDx_kq rN4k#ewGk>X5HjF <Q>l_Uq~%Ijod7M_/QwGhw?Ba@H既q\r47bfǀo|v%$9kfi&`H -)keM.A؇n:56mZY."NG]$ztƬO 5^D)hU 3m}M9tKڈTqZNk<ًoqrȚ8X5\d[K(`7ynĈT!3go Ǹ1n=Qh q*luVQU;KܑB{܍;HIWcmfʆtTb똛IŎlRqI.z V2@b]0Ðc"I5) 2*%ie8€{1CFrHꡳZm[!G$6= "Cnp%Z'V FfJĉ1F#|B͂N5h^JŝRhX 푐5Eg8.`/w;TMHRQqGZ A$H%^T;܋悠yfCzW_?DU^|8d[?<09.6D r-"ȱa7y,z

数学问题:设椭圆x^2/6+y^2/2=1和双曲线(x^2/3)-y^2=1的公共焦点分别是F1,F21,设椭圆x^2/6+y^2/2=1和双曲线(x^2/3)-y^2=1的公共焦点分别是F1,F2,P是两曲线的一个交点, 则cos∠F1PF2等于(B) A,1/4 B,1/3 C,2
数学问题:设椭圆x^2/6+y^2/2=1和双曲线(x^2/3)-y^2=1的公共焦点分别是F1,F2
1,设椭圆x^2/6+y^2/2=1和双曲线(x^2/3)-y^2=1的公共焦点分别是F1,F2,P是两曲线的一个交点,
则cos∠F1PF2等于(B)
A,1/4 B,1/3 C,2/3 D,-1/3
2,已知双曲线x^2/25-y^2/24=1上一点M到右焦点F的距离为11,N是MF的中点,O为坐标原点,
则|NO|等于(B)
A,11/2 B,21/2 C,1/2 D,1/2或21/2
3,已知曲线y^2=ax与其关于点(1,1)对称的曲线有两个不同的交点A,B,如果过这两个交点的直线
的倾斜角是45度,则实数a的值是(C)
A,1 B,3/2 C,2 D,3
4,实数x,y满足x^2+4y^2=4,则t=(x-1)^2+y^2的最大值与最小值的积为____6_______
5,已知点A(2,0),B(4,0),动点P在直线y^2=-4x上,
使得向量AP*向量BP取得最小值的点P的坐标____(0,0)______
6,已知点A(3,2),F(2,0)在双曲线x^2-y^2/3=1上求一点P,其坐标为____√21/3,2____时,
|AP|+|PF|/2取最小值
最好解析一下

数学问题:设椭圆x^2/6+y^2/2=1和双曲线(x^2/3)-y^2=1的公共焦点分别是F1,F21,设椭圆x^2/6+y^2/2=1和双曲线(x^2/3)-y^2=1的公共焦点分别是F1,F2,P是两曲线的一个交点, 则cos∠F1PF2等于(B) A,1/4 B,1/3 C,2
1
设椭圆x²/6+y²/2=1和x²/3-y²=1的公共焦点分别为F1,F2.P是两曲线的一个交点,则cos角F1PF2的值为?
椭圆的半焦距c=√(6-2)=2,抛物线的半焦距c=√(3+1)=2
故二者有相同的焦点F1(-2,0),F2(2,0).
x²/6+y²/2=1.(1)
x²/3-y²=1.(2)
2*(1)+(2)得:
(2/3)x²=3,x²=9/2,故x=±3/√2=±3(√2)/2,
y²=3/2-1=1/2,故y=±√2/2
取P(3(√2)/2,√2/2).
在△F1PF2内使用余弦定理:
cos∠F1PF2=[│PF1│²+│PF2│²-│F1F2│²]/2│PF1││PF2│
其中│PF1│²=[3(√2)/2)+2]²+(√2/2)²=9+6√2
│PF1│=√(9+6√2)=(√2+1)√3
│PF2│²=[3(√2)/2)-2]²+(√2/2)²=9-6√2
│PF2│=√(9-6√2)=(√2-1)√3
│F1F2│²=16
∴cos∠F1PF2=[(9+6√2)+(9-6√2)-16]/2[(√2+1)√3][(√2-1)√3]
=1/3
(B).
2
离心率e=c/a=√(25+24)/5=7/5;
则点M到右准线x=25/7 的距离为 11×e=77/5.
由此求出点M的横坐标;再求出坐标;再求出点N的坐标.
就可以求出|NO|.
(B).
3
由关于点(1,1)对称的曲线有两个不同的交点有:定其为x1,x2;则这两点并点(1,1)在同一条直线上.故可求得该直线为y=x;将这个方程以y^2=ax联立解答得x1,x2分别为:(0,0)与(a,a).
由此有a=2.
(C),
4
即椭圆上一点到焦点的距离.很容易得知,最大值与最小值分别在长,短轴的到该点的距离的大小.
即:(2+√3)^2×(2-√3)^2=6.
5
P(-y^/4,y)
向量AP=[(-y^/4)-2,y]
向量BP=[(-y^/4)-4,y]
向量AP●向量BP=[(-y^/4)-2][(-y^/4)-4]+y^
=(1/16)y^+(5/2)y^+8=f(y^)
f(y^)对称轴为-20
当y^>0时,f(y^)单调递增.
∵y^≥0
∴[f(y^)]min=f(0)=8
∴P(0,0)
6
F是右焦点;则若|AP|+|PF|/2最小,则 |AP|+P到右准线的距离最小.即P纵坐标为2;代入椭圆方程得:横坐标为√21/3.

真是服了你。这样也行,你上高三,还是高二啊,早就忘记了啊。。。

你问得 不是很多也

数学问题:设椭圆x^2/6+y^2/2=1和双曲线(x^2/3)-y^2=1的公共焦点分别是F1,F21,设椭圆x^2/6+y^2/2=1和双曲线(x^2/3)-y^2=1的公共焦点分别是F1,F2,P是两曲线的一个交点, 则cos∠F1PF2等于(B) A,1/4 B,1/3 C,2 设椭圆x^2/16+y^2/4=1,则椭圆的焦距|F1F2|等于 椭圆方程为x^2/4+y^2=1 设直线l:y=x+m,若l与椭圆交于P,Q两点,且PQ距离为2,求m值数学--椭圆 (急)数学的椭圆与直线问题已知直线L:y=2x-根号3 与椭圆C:x平方/a平方 +y^2=1 (a>1)交于P Q两点,并以P.Q两点为直径的圆过椭圆C的右顶点A (1)设P.Q中点M(x0 ,y0)求证:x0 设椭圆C通过P(根号6,-3)且与椭圆x^2/4+y^2/10=1有相同的焦点,求椭圆C的方程 数学参数方程 求详解设椭圆x^2+3y^2-2mx-12my+13m^2-6=0(m属于R)求: (1)求椭圆中心m的轨迹方程 (2) 当椭圆右焦点落在直线x+y-11=0上时, 求椭圆方程 请教一个隐函数求导问题:设P(4,-1)为椭圆x^2/6+y^2/3=1外的一点,过P做椭圆的切线,求切线方程 关于过已知两点求椭圆方程问题按照老师所讲,已知两点求过两点椭圆方程时,需分类讨论:椭圆在x轴上时 设椭圆为x^2/a^2+y^2/b^2 此时a>b>0椭圆在y轴上时 设椭圆为x^2/b^2+y^2/a^2 此时仍a>b& 关于高中椭圆的切线问题设椭圆方程为X^2/a^2 + Y^2/b^2 =1,试求过椭圆上一点P(x0,y0)的切线.x0x/a^2 + y0y/b^2 = 1 【高二数学】已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点为M(0,1),离心率e=√6/3.设直线l与椭圆交与A、B已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点为M(0,1),离心率e=√6/3.设直线l与椭圆交与A、B两点,坐标O 设椭圆的方程为x^2/16 + y^2/12 =1,则该椭圆的离心率为 设椭圆的方程为x^2/16+y^2/12=1,则该椭圆的离心率为 高二今天刚刚开学的数学不等式问题设实数x y z 满足y+z=6-4x+3x^2 z-y=4-4x+x^2 确定x y z的大小关系 设F1,F2分别为椭圆E:x^2+y^2/b^2=1(0 设F1,F2分别是椭圆x^2+y^2/b^2=1(0 设F1,F2分别为椭圆E:x^2+y^2/b^2=1(0 设 F1 F2,分别是椭圆E:x^2 +y^2/b^2 =1(0 设F1,F2分别是椭圆x^2+y^2/b^2=1(0