二次函数y=ax²+bx+c图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法①abc<0;②a-b+c<0:③4a-2b+c<0;④2a+b=0,其中正确的有?为什么?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:52:56
二次函数y=ax²+bx+c图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法①abc<0;②a-b+c<0:③4a-2b+c<0;④2a+b=0,其中正确的有?为什么?
x[OQǿMw˃~sζKb,>5 B*JЖRFx!KsfΜfr271}d}KzHڣNZ|alխў~*Y"xN^˜Mnٗ8\ZiNoY#[jm홻&jYi}㚋/ڦlU@5k 0׳2nT]& >Ʃғx<IJO|l,yx"I'OYud{OD,+|/y.Vߏa/Q jP ~ XB BxP8D"j֢ʋaQ#,sSZaQ (& 0H,&5~\2"3l-@]ל)[Hc~x]/@釫&굹qC+Dݨlk3滺 #T]vcYh7BsE22 ^ g@C'=uCࣵvc#>{Vs'߇Ҿ3K1918

二次函数y=ax²+bx+c图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法①abc<0;②a-b+c<0:③4a-2b+c<0;④2a+b=0,其中正确的有?为什么?
二次函数y=ax²+bx+c图象的对称轴是直线x=1,其图象的一部分如图所示.
对于下列说法①abc<0;②a-b+c<0:③4a-2b+c<0;④2a+b=0,其中正确的有?

为什么?

二次函数y=ax²+bx+c图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法①abc<0;②a-b+c<0:③4a-2b+c<0;④2a+b=0,其中正确的有?为什么?
由图知,抛物线的开口向下,所以a<0,与y轴的交点在x轴上方,所以c>0,对称轴x=-b/2a=1,即b=-2a,所以b>0..所以(1)abc<0 正确.(4)2a+b=0正确.因为对称轴与抛物线与x轴的交点的距离在1 和2之间,所以当x=-1和-2时函数图像上的点都在x轴的下方,所以(2)正确,(3)正确.所以上述说法都正确.

开口向下,则a<0
对称轴x=-b/(2a)=1,得:b=-2a>0, b+2a=0, 4正确
从图上看出,在y轴上的截距c>0
因此abc<0, 1正确。

f(-1)=a-b+c
由对称性得f(-1)=f(3), 从图上看出f(3)<0,故a-b+c<0, 2正确

f(-2)=4a-2b+c
由对称性,f(-2)...

全部展开

开口向下,则a<0
对称轴x=-b/(2a)=1,得:b=-2a>0, b+2a=0, 4正确
从图上看出,在y轴上的截距c>0
因此abc<0, 1正确。

f(-1)=a-b+c
由对称性得f(-1)=f(3), 从图上看出f(3)<0,故a-b+c<0, 2正确

f(-2)=4a-2b+c
由对称性,f(-2)=f(4)<0,因此4a-2b+c<0, 3正确

所以1,2,3,4都正确。

收起