已知abc是△ABC的三边,且满足a²+b²-8b-10a+41=0,求△ABC中c的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:45:06
x){}KXhfG'Z|oΓS^bD5eCsk$kkhmbhklcDߓkzO{ڰEO[lil~
]|1{L<5uM5rFI&0Vej:^hk
%ٚiOzwѓK~{餞K?|
AOW=ݾ~yC<;P
已知abc是△ABC的三边,且满足a²+b²-8b-10a+41=0,求△ABC中c的取值范围
已知abc是△ABC的三边,且满足a²+b²-8b-10a+41=0,求△ABC中c的取值范围
已知abc是△ABC的三边,且满足a²+b²-8b-10a+41=0,求△ABC中c的取值范围
因为
a²+b²-8b-10a+41=0
(a-5)²-25+(b-4)²-16+41=0
(a-5)²+(b-4)²=0
所以a=5
b=4
三角形两边之和大于第三边
两边只差小于第三边
1