1x2÷1+2x3÷1+3x4÷1+4x5÷1+5x6÷1.+n(n+1)÷1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:29:37
1x2÷1+2x3÷1+3x4÷1+4x5÷1+5x6÷1.+n(n+1)÷1
x0EF-T7P!K7BŇZA]{AEwI%'/ *n7vI x9s%7ЈPV* ( ҬG 4@ <>-ZkBVqC?arS>hNs3zJvZ 6=.5DXK{긹M*EG%@E QJ"v

1x2÷1+2x3÷1+3x4÷1+4x5÷1+5x6÷1.+n(n+1)÷1
1x2÷1+2x3÷1+3x4÷1+4x5÷1+5x6÷1.+n(n+1)÷1

1x2÷1+2x3÷1+3x4÷1+4x5÷1+5x6÷1.+n(n+1)÷1
原式=1*2+2*3+3*4+...+n(n+1)
=1²+1+2²+2+3²+3+...+n²+n
=(1²+2²+3²+...+n²)+(1+2+3+...+n)
∵1²+2²+3²+...+n²=【n(n+1)(2n+1)】/6①(平方和公式)
1+2+3+...+n=【n(n+1)】/2②(等差数列公式)
∴原式=①+②=【n(n+1)(n+2)】/3