1.设函数Y=f(x)是定义在R上的奇函数,当X>0时,F(X)=x平方-2X+3,试求f(X)在R上的表达式,并画出它的图像(图像可以先不画),根据图像写出单调区间.(我个人认为这个函数既不是奇函数,也不是偶函
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 06:35:35
xN@_BK.ute"H?EQbB@[JM|t+x>+cLf{;'sR"Fu%iLSو̑zdzp;̊9aYHqҜHK`+h|N0Nk_/@A/]
SZofxKa)oM\+m֩5 U;hǰ<ųm?zM?x\ '1+uf(56PZ*u`8TCM#!>_LTp2$ /)@8`ۆWRӑ͌Nʘ,DeNÁs!Y9UZXb-hxPgTsRCt7l\?$u|*
1.设函数Y=f(x)是定义在R上的奇函数,当X>0时,F(X)=x平方-2X+3,试求f(X)在R上的表达式,并画出它的图像(图像可以先不画),根据图像写出单调区间.(我个人认为这个函数既不是奇函数,也不是偶函
1.设函数Y=f(x)是定义在R上的奇函数,当X>0时,F(X)=x平方-2X+3,试求f(X)在R上的表达式,并画出它的图像(图像可以先不画),根据图像写出单调区间.
(我个人认为这个函数既不是奇函数,也不是偶函数,但这是辅导册上的题,反正我现在非常纠结,)
2.设奇函数F(X)在x>0上为增函数,切F(1)=0,则不等式f(X)-f(-x)/x
···那个,能不能再详细点,我的理解力非常的差~
1.设函数Y=f(x)是定义在R上的奇函数,当X>0时,F(X)=x平方-2X+3,试求f(X)在R上的表达式,并画出它的图像(图像可以先不画),根据图像写出单调区间.(我个人认为这个函数既不是奇函数,也不是偶函
1.当X
设F(x)是定义在R上的函数对任意X,Y属于R,恒有F(X+Y)=f(X)+F(Y) (1)求F(0)的值 (2)求证F(x)为奇函数设F(x)是定义在R上的函数对任意X,Y属于R,恒有F(X+Y)=f(X)+F(Y) (1)求F(0)的值 (2)求证F(x)为奇
一题高一函数基础题.设f(x)是定义在R上的函数,则函数F(x)=f(x)-f(-x)在R上一定是( )A奇函数B偶函数C既奇又偶D非寄非藕
高一数学集合与函数概念1.设f(x)是定义在R上的一个函数,则函数F(x)=f(x)-f(-x)在R上一定是( )函数.(填奇、偶、既奇又偶、非奇非偶)
设函数f(x)是定义在R上的非常值函数,且对任意x,y有f(x+y)=f(x)f(y).(2)设A={(x,y)|f(x^2)f(y^2)
设f(x)是定义在R上的增函数,试利用定义证明函数F(x)=f(x)-f(a-x)在R上是增函数
设f(x)是定义在R上的函数,恒有f(x+y)=f(x)f(y),且x>0时,0
函数设a为实常数,y=f(x)是定义在R上的奇函数,当x
设函数y=f(x)是定义在R 上的函数,并且满足下面三个条件:1.对正数x、y都有f(xy)=f(x)+f(y);2.当x>1时,f(x)
设函数f(x)是定义在R上的函数,且对于任意x,y∈R.设函数f(x)是定义在R上的函数,且对于任意x,y∈R,恒有f(x+y)=f(x)f(y),且当x>0时,f(x)>1.证明:(1)当f(0)=1,且x<0时,0<f(x)
设f(x)是定义在R上的函数,且满足f(0)=1,并且对任意实数x,y有f(x-y)=f(x)-y(2x-y+1),1.求f(x)的表达式 2.设f(x)是定义在R上的函数,且满足f(0)=1,并且对任意实数x,y有f(x-y)=f(x)-y(2x-y+1),1.求f(x)的表达式
设f(x)设f(x)是定义在R上的函数且对任意x,y属于R,恒有f(x+y)=f(x)f(y),且x>0时,0
设函数f(x)是定义在R﹢上的减函数,并满足f(xy)=f(x)+f(y),f(1/3)=1.如果f(x)+f(2-x)
设函数f(X)=是定义在R上的奇函数,当X后面是>
设函数y=f(x)是定义在R上的减函数,并且满足f(x+y)=f(x)+f(y),f(1/2)=1 求不等式f(4x)+f(2-x)
设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),f(3)=1,设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),f(3)=1,求不等式f(x)+f(x-2)>2能不能详细点儿
设函数y=f(x)是定义在R上的减函数,并且满足f(xy)=f(x)+f(y),f(3分之1)=1,求f(1)?如果f(x)+f(2-x)
函数f(x)是定义在R上的一函数,则函数F(x)=f(x)-f(-x)在R上的一定是 A奇函数B偶函数C既是奇有是偶D非奇
函数 (19 8:22:17)设函数F(x)是定义在R上的非常值函数,且对任意X,Y有F(X+Y)=F(X)F(y).证明f(0)=1