如图,直角三角形ABC中,角ABC=90°,D是AB边上的点,AD的垂直平分线EF交AC于E,垂足为F,ED的延长线与CB的延长线交于点G.求证:点E在GC的垂直平分线上.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 12:26:47
如图,直角三角形ABC中,角ABC=90°,D是AB边上的点,AD的垂直平分线EF交AC于E,垂足为F,ED的延长线与CB的延长线交于点G.求证:点E在GC的垂直平分线上.
xTkOP+ ߚ[YIFw ʦ&Ø)Fp(b"6F,,=]΍Q6?hdKz}ssFNY+mxG@ ke?>fV' PO>2H08oK!zd @.zY[Ǯt[P"iv} 27vE$ SߧUu%2>屔s#GOS 7ݧ(Lgrt6ORF}J* y:JYYi*rT jj*M5Q&)j X_I,&,ѡpD04k K>́ԭAGKE8*XaE 04JLTn4c@Z+Knf "}_S/DžvcBhE^E#OEj{)Px{Y*ɝb$4 xq(%:nB/h`:/I뫀GIsA*=V%9fM)&9S]ͅmoo%a{{o)UzwQj; ^nm兙I݋sFt7 oY;KJt3DD7n^ɞ;X _otVhK݌!7$A݋p w٧]_=6G̀dڕ㾑_`

如图,直角三角形ABC中,角ABC=90°,D是AB边上的点,AD的垂直平分线EF交AC于E,垂足为F,ED的延长线与CB的延长线交于点G.求证:点E在GC的垂直平分线上.
如图,直角三角形ABC中,角ABC=90°,D是AB边上的点,AD的垂直平分线EF交AC于E,垂足为F,ED的延长线与CB的延长线交于点G.
求证:点E在GC的垂直平分线上.



如图,直角三角形ABC中,角ABC=90°,D是AB边上的点,AD的垂直平分线EF交AC于E,垂足为F,ED的延长线与CB的延长线交于点G.求证:点E在GC的垂直平分线上.
证明:∵EF为AD的垂直平分线
∴AF=DF∠AFE=∠DFE=90°
∵EF=EF
∴三角形AFE≌三角形DFE
∴∠AEF=∠DEF
∵∠AFE=∠ABC=90°
∴EF‖CG
∴∠AEF=∠C ∠DEF=∠G
∴∠C=∠G
过E作CG的垂线,交CG于H,则∠EHG=∠EHC=90°
∵∠C=∠G ∠EHG=∠EHC EH=EH
∴三角形EHG≌三角形EHC
∴GH=CH
∵GH⊥CH
∴EH为CG的垂直平分线
∴点E在GC的垂直平分线上
累死偶了~打那些符号~噩梦啊~

角AEF=角DEF
EF平行GC
所以角DEF=角G=角AEF=角C
所以EG=EC
所以点E在GC的垂直平分线上(等腰三角三线合一)

证明:∵EF为AD的垂直平分线
∴AF=DF∠AFE=∠DFE=90°
∵EF=EF
∴三角形AFE≌三角形DFE
∴∠AEF=∠DEF
∵∠AFE=∠ABC=90°
∴EF‖CG
∴∠AEF=∠C ∠DEF=∠G
∴∠C=...

全部展开

证明:∵EF为AD的垂直平分线
∴AF=DF∠AFE=∠DFE=90°
∵EF=EF
∴三角形AFE≌三角形DFE
∴∠AEF=∠DEF
∵∠AFE=∠ABC=90°
∴EF‖CG
∴∠AEF=∠C ∠DEF=∠G
∴∠C=∠G
过E作CG的垂线,交CG于H,则∠EHG=∠EHC=90°
∵∠C=∠G ∠EHG=∠EHC EH=EH
∴三角形EHG≌三角形EHC
∴GH=CH
∵GH⊥CH
∴EH为CG的垂直平分线
∴点E在GC的垂直平分线上

收起