证明:函数y=(1/x)sin(1/x)在区间(0,1]上无界,但当x趋于正无穷时,该函数不是无穷大.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 19:29:36
证明:函数y=(1/x)sin(1/x)在区间(0,1]上无界,但当x趋于正无穷时,该函数不是无穷大.
x){ٌ{f=mlJ[ C <0tΊ=^N~Oa]Ϧ/x>G޶{'WdW߳A+?M}6c=Dz6IEtOΆ>jk}A|HyMVws\H1XaHBQ< ]RS q+A 55[c5 A$ W\g FF1

证明:函数y=(1/x)sin(1/x)在区间(0,1]上无界,但当x趋于正无穷时,该函数不是无穷大.
证明:函数y=(1/x)sin(1/x)在区间(0,1]上无界,但当x趋于正无穷时,该函数不是无穷大.

证明:函数y=(1/x)sin(1/x)在区间(0,1]上无界,但当x趋于正无穷时,该函数不是无穷大.
1/x=2kπ+π/2时,k>=0为整数
即x=1/(2kπ+π/2)--->0时,
y=2kπ+π/2--->+∞,
因此x-->0时,函数无界.
x-->+∞时, |y|=(1/x)|sin(1/x)|0, 因此x趋于正无穷时,函数趋于0.