已知函数f(x)=2√3sin(x/2)cos(x/2)-[ (cos²(x/2)-sin²(x/2) ] (1)求函数f(x)的最大值并求已知函数f(x)=2√3sin(x/2)cos(x/2)-[ (cos²(x/2)-sin²(x/2) ](1)求函数f(x)的最大值并求出此时x的值;(2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:42:51
已知函数f(x)=2√3sin(x/2)cos(x/2)-[ (cos²(x/2)-sin²(x/2) ] (1)求函数f(x)的最大值并求已知函数f(x)=2√3sin(x/2)cos(x/2)-[ (cos²(x/2)-sin²(x/2) ](1)求函数f(x)的最大值并求出此时x的值;(2)
已知函数f(x)=2√3sin(x/2)cos(x/2)-[ (cos²(x/2)-sin²(x/2) ] (1)求函数f(x)的最大值并求
已知函数f(x)=2√3sin(x/2)cos(x/2)-[ (cos²(x/2)-sin²(x/2) ]
(1)求函数f(x)的最大值并求出此时x的值;
(2)若f(x)=0,求[sinx+cos(π+x)]/[sinx+sin(π/2-x)]的值
已知函数f(x)=2√3sin(x/2)cos(x/2)-[ (cos²(x/2)-sin²(x/2) ] (1)求函数f(x)的最大值并求已知函数f(x)=2√3sin(x/2)cos(x/2)-[ (cos²(x/2)-sin²(x/2) ](1)求函数f(x)的最大值并求出此时x的值;(2)
(1)f(x)=(2√3)sin(x/2)cos(x/2)-[(cos²(x/2)-sin²(x/2)]=(√3)sinx-cosx=2sin(x-π/6)
令x-π/6=π/2+2kπ,得:x=2π/3+2kπ(k∈Z)
即当x=2π/3+2kπ(k∈Z)时,f(x)有最大值2.
(2)
∵f(x)=0
∴2sin(x-π/6)=0
∴sin(x-π/6)=0
∴tan(x-π/6)=sin(x-π/6)/cos(x-π/6)=0
∴[tanx-tan(π/6)]/[1+tanxtan(π/6)]=0
∴tanx-tan(π/6)=0
∴tanx=tan(π/6)=(√3)/3
∴[sinx+cos(π+x)]/[sinx+sin(π/2-x)]
=(sinx-cosx)/(sinx+cosx)
=[(sinx-cosx)/cosx]/[(sinx+cosx)/cosx]
=(tanx-1)/(tanx+1)
=[(√3)/3-1]/[(√3)/3+1]
=(√3)-2.