已知f(x)=2cos(x+π/4)cos(x-π/4) (1)求函数f(x)的单调增区间 (2)若f(α)=12/13,α∈(-π/2,0),求sin(α-π/4)的值(3)设函数g(x)=f(x)+√3sin2x,x∈[-π/6,π/4],求x的值,使得g(x)取

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 11:31:18
已知f(x)=2cos(x+π/4)cos(x-π/4) (1)求函数f(x)的单调增区间 (2)若f(α)=12/13,α∈(-π/2,0),求sin(α-π/4)的值(3)设函数g(x)=f(x)+√3sin2x,x∈[-π/6,π/4],求x的值,使得g(x)取
xU]OP+ e]O{+7+$hn&j#bLMF.aF`B_=紣qhDotmy3ӷa +vk!5P<׶G񳵳ݛxuLB1xΞR^+)Z`#X!aTi\ZP6`R !+XN;M+[*Hv"#OƇ4;~,zZ7$yL@GR guJ<8o1XG:bkGM<3E~{GH` /@?eL`41/WQ^"jOTh" aY и&SǍ[8C5l)vIQ4W8?M &2"ZK&J3f ) uqbqredŠ5#KbX; `s.DѨ_E,Uz֨c=ɭ-k~eRa$^e媥M{ؖ6]_ W 4 Y5o%W^U,Ttw<;uht^4bxkjخ&4d 6. ȅº]I"p q:岣͓栽5ӝ9aw,6pȳaDpV?'盶@]  HtFYbbfWX+Q+!{Fs'{Y~T"/wξf<Ml%

已知f(x)=2cos(x+π/4)cos(x-π/4) (1)求函数f(x)的单调增区间 (2)若f(α)=12/13,α∈(-π/2,0),求sin(α-π/4)的值(3)设函数g(x)=f(x)+√3sin2x,x∈[-π/6,π/4],求x的值,使得g(x)取
已知f(x)=2cos(x+π/4)cos(x-π/4) (1)求函数f(x)的单调增区间 (2)若f(α)
=12/13,α∈(-π/2,0),求sin(α-π/4)的值
(3)设函数g(x)=f(x)+√3sin2x,x∈[-π/6,π/4],求x的值,使得g(x)取得最大值

已知f(x)=2cos(x+π/4)cos(x-π/4) (1)求函数f(x)的单调增区间 (2)若f(α)=12/13,α∈(-π/2,0),求sin(α-π/4)的值(3)设函数g(x)=f(x)+√3sin2x,x∈[-π/6,π/4],求x的值,使得g(x)取
(1)
f(x)=2cos(x+π/4)cos(x-π/4)=2sin(x-π/4)*cos(x-π/4)=sin(2x-π/2)=cos(2x)
x∈(2kπ,2kπ+π/2),k∈Z时,f(x)单调递增
(2)f(α)=sin(2α-π/2)=12/13,α∈(-π/2,0),
2α-π/2∈(-3π/2,-π),
cos(2α-π/2)=-5/13
α-π/4∈(-3π/4,-π/2),
t=sin(α-π/4)<0
1-2t^2=-5/13
t=sin(α-π/4)=-3*(√13)/13
(3)
g(x)=f(x)+√3sin2x=2[cos(2x)/2+√3sin(2x)/2]=sin(2x+π/6),x∈[-π/6,π/4],
g(π/4)=(√3)/2
g(-π/6)=-1/2
g(x)min=-1/2
g(π/6)=g(x)max=1

f(x)=2cos(x+π/4)cos(x+π/4-π/2)=2cos(x+π/4)sin(x+π/4)=sin(2x+π/2)=cos(2x)
第一问:(-π/2+kπ,kπ)
第二问:f(x)=cos2x=cos2α=12/13 得sinα=1/√26 cosα=5/√26
得sin(α-π/4)=sinαcosπ/4-cosαsinπ/4=√...

全部展开

f(x)=2cos(x+π/4)cos(x+π/4-π/2)=2cos(x+π/4)sin(x+π/4)=sin(2x+π/2)=cos(2x)
第一问:(-π/2+kπ,kπ)
第二问:f(x)=cos2x=cos2α=12/13 得sinα=1/√26 cosα=5/√26
得sin(α-π/4)=sinαcosπ/4-cosαsinπ/4=√(2/3)
第三问:g(x)=cos2x+√3sin2x=2sin(2x+π/6)
最大值为:x=π/6,g(x)=2

收起