求 f(x)= [ cos(Inx) ] ^2 的导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 02:07:11
求 f(x)= [ cos(Inx) ] ^2 的导数
xQJ@ٵ Y'B * %!tݩ;"ňR: #G̜sϽd[ mGA!89^$;[oOxJw8{QO8:`h @F=یvNMa^,L4" 1hSMWx)hEiqU["ZJf 2`zV"˚UK;!6R]TU`K䴄_oi2U䖇<̂@m54*-i2-$U)V ]Se gيk* Ё[h!D~`B

求 f(x)= [ cos(Inx) ] ^2 的导数
求 f(x)= [ cos(Inx) ] ^2 的导数

求 f(x)= [ cos(Inx) ] ^2 的导数
这是复合函数,
f(x)=x^2
g(x)=cosx
h(x)=lnx
所以f{g[h(x)]}=[ cos(Inx) ] ^2
所以首先对平方求导,再对cos求导,最后对ln求导
所以f'(x)=2cos(lnx)*[cos(lnx)]'
=2cos(lnx)*[-sin(lnx)]*(lnx)'
=2cos(lnx)*[-sin(lnx)]*(1/x)
=-2cos(lnx)*sin(lnx)*(1/x)
=-[sin(2lnx)]/x

f'(x)=-sin(2lnx)/x

2cos(lnx)*(-sin(lnx))*(1/x)

f(x)= [ cos(Inx) ] ^2
f'(x)= 2*[ cos(Inx) ] * [cos(Inx)]'
其中:[cos(Inx)]'
=-sin(Inx)*(Inx)'
=-sin(Inx)*1/x
所以f'(x)= 2*[ cos(Inx) ] *(-sin(Inx)*1/x)
=-2*cos(Inx)*sin(Inx)/x=-sin(2lnx)/x

f‘(x)= 2[ cos(Inx) ] * [ cos(Inx) ] ’
=2[ cos(Inx) ] * [ sin(Inx) ] *(Inx)‘
=2[ cos(Inx) ] * [ sin(Inx) ] /x
=2sin(2lnx)/x