函数y=(sinx)^2+2sinxcosx+3(cosx)^2的最小值是?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 01:31:34
函数y=(sinx)^2+2sinxcosx+3(cosx)^2的最小值是?
x){ھ řyqFF Fr~q=lN O<&H<v6a‹7LVbkm1i*PuQ}n&XQR#]0~qAb[6`!6Ap6DB p( 9[Ӈ0PE܋:^ pi{q` fƳ;o79(l>}Mm#.0҅i@r߼

函数y=(sinx)^2+2sinxcosx+3(cosx)^2的最小值是?
函数y=(sinx)^2+2sinxcosx+3(cosx)^2的最小值是?

函数y=(sinx)^2+2sinxcosx+3(cosx)^2的最小值是?
【解】
y=(sinx)^2+2sinxcosx+3(cosx)^2
=1+2(cosx)^2+sin2x
=2+cos2x+sin2x
=2+√2sin(x+θ)
≥2-√2
最小值是2-√2

1

解】
y=(sinx)^2+2sinxcosx+3(cosx)^2
=(sinx)^2+(cosx)^2+2(cosx)^2 +sin2x
=1+2(cosx)^2+sin2x
=2+cos2x+sin2x
=2+√2sin(x+θ) ≥2-√2
所以最小值为2-√2

原式=1+2(cosx)^2+sin2x
=2+cos2x+sin2x
=(根号2)sin(2x+派/4)+2
所以最小值为(2-根号2)