X〉0,求证 1/(X+1)〈ln(x+1)-lnx〈1/X 用拉格朗日证明.X〉0,求证 1/(X+1)〈ln(x+1)-lnx〈1/X 用拉格朗日证明.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 22:22:04
X〉0,求证 1/(X+1)〈ln(x+1)-lnx〈1/X 用拉格朗日证明.X〉0,求证 1/(X+1)〈ln(x+1)-lnx〈1/X 用拉格朗日证明.
xS]oP+d"d;' 06^Gqch2Q0\blG?z /xzZ6#qfM{=>}`ra,yjxFzaks,n*ڢkg̊nf@fi{+$A!Eގa˜)tdr!M #}zmr{'CK%T Q0Y>VکXeTQc/a:qnr G=`we``RѪì:ެBc[%`z]! ;EΏZ:8oSa4qf.k(8P15lmuqT&■žvE_bH7NxP/ ت*P1e@:z6w-xNAf~?ƇS)>S"d`}Els ^խzBFMuR&ubRߛ&stt19lGAܽ#OHUYxl!N(hi6Ŏ "v1>D<xƕNH&G7MFD+QWL,/"QO#Y2 C E+ DˢB2qYQQDJ8gQO %9H|#-yK ;EŰ<(,Dg( 49QuN kڰq5L3Jx

X〉0,求证 1/(X+1)〈ln(x+1)-lnx〈1/X 用拉格朗日证明.X〉0,求证 1/(X+1)〈ln(x+1)-lnx〈1/X 用拉格朗日证明.
X〉0,求证 1/(X+1)〈ln(x+1)-lnx〈1/X 用拉格朗日证明.
X〉0,求证 1/(X+1)〈ln(x+1)-lnx〈1/X
用拉格朗日证明.

X〉0,求证 1/(X+1)〈ln(x+1)-lnx〈1/X 用拉格朗日证明.X〉0,求证 1/(X+1)〈ln(x+1)-lnx〈1/X 用拉格朗日证明.
在(0,+∞)上任意取定一区间(x,x+1)
构造函数f(x)=lnx.,显然f(x)在(x,x+1)上必连续,由拉格朗日中值定理可知,存在ξ∈(x,x+1),
使得f(x+1)-f(x)=f'(ξ)(x+1-1)=f'(ξ)
又f'(x)=1/x,所以f'(ξ)=1/ξ.
因此f(x+1)-f(x)=f'(ξ)就化为
ln(x+1)-f(x)=1/ξ.①
因为ξ∈(x,x+1)
∴x<ξ<x+1,
∴1/(x+1)<1/ξ<1/x.将①式带入得
1/(x+1)<ln(x+1)-lnx<1/x.
原式得证.

根据lagrrange定理,1/(x+1)<=∫1/x+1dt

另f(x)=lnx
由拉格朗日中值定理有存在ε∈(x,x+1)使得f`(ε)=f(x+1)-f(x)
1/(x+1)所以1/(x+1)

没学过诶……······