f(x)=sinx+cosx=根号2sin(x+pai/4) 是怎么样得来的呢?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 16:20:21
f(x)=sinx+cosx=根号2sin(x+pai/4) 是怎么样得来的呢?
x)KӨд-̫N/}`F@ L}Mg3?k{قOM6wY-O'.I*ҧ;*AVnXVQ,# >Vkb(ʟo7N k$Ab=V4ow\,b.\1PVl0bu`14H@r,B

f(x)=sinx+cosx=根号2sin(x+pai/4) 是怎么样得来的呢?
f(x)=sinx+cosx=根号2sin(x+pai/4) 是怎么样得来的呢?

f(x)=sinx+cosx=根号2sin(x+pai/4) 是怎么样得来的呢?
f(x) = sinx+cosx
= √2(sinx (1/√2) + cosx (1/√2) )
= √2(sinx cosπ/4 + cosx sinπ/4)
= √2(sin(x+π/4))

f(x)=根号2*[根号2/2*sinx+cosx*根号2/2]
=根号2*[cos(π/4)*sinx+cosx*sin(π/4)]
=根号2*sin(x+π/4)