积分号(2到-2)根号下4-x^2(sinx+1)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 05:25:56
积分号(2到-2)根号下4-x^2(sinx+1)dx
xN0_ţMbʘEHDMBS! @*vB38}M>^߸Au“>X dJaѧP٭C) =Z.L '!$|fpE UbOQ*U;m|, Ҷiq,V-:T:]^FGB0>SS? iͺŅ=t(GL HV'($Q6:njx .( \+q6@nԶ/'BB}F~R $@ڶmC&v"*!"5X 5nF

积分号(2到-2)根号下4-x^2(sinx+1)dx
积分号(2到-2)根号下4-x^2(sinx+1)dx

积分号(2到-2)根号下4-x^2(sinx+1)dx
∫[2,-2]√(4-x^2)(sinx+1)dx
=∫[2,-2]√(4-x^2)sinxdx+∫[2,-2]√(4-x^2)dx
=0+x√(4-x^2)|[2,-2] +∫[2,-2]dx/√(4-x^2)
=∫[2,-2]d(x/2)√(1-(x/2)^2)
=arcsin(x/2)|[2,-2]
=-π/2-π/2
=-π
∫[2,-2]√(4-x^2)sinxdx √(4-x^2)sinx是奇函数,
=0

原式=∫(-2,2) 根号(4-x^2)*sinx dx +∫(-2,2) 根号(4-x^2) dx
因为f(x)=根号(4-x^2)*sinx是奇函数 g(x)=根号(4-x^2)是偶函数
所以原式=2∫(0,2) 根号(4-x^2) dx
令x=2sint dx=2costdt
原式=4∫(0,π/2) 2(cost)^2 dt
=4∫(0,π/2) 1+cos2t dt
=(4t-2sin2t)|(0,π/2)
=2π