设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵[P^(-1)AP]^T属于特征值λ的特征向量是( )A.[P^(-1)]α B.[P^T]α C.Pα D.{[P^(-1)]^T}α

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 00:35:44
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵[P^(-1)AP]^T属于特征值λ的特征向量是( )A.[P^(-1)]α B.[P^T]α C.Pα D.{[P^(-1)]^T}α
xQJ@YЦt&NE"TMU FE&'+:f_6h|Ra9̙*̞uO ^E]|sUw9)unyD[^3p@u:ӧdV.A0OcnBtPaRֵ^7ܯa1yW.Dfum+p..w-+W/ Q%Vz}&X+J wXW*A͡ppzTܨJ) > p0չ_[p6p_x?7SO6aUY0wRzP./7˳Gڪgљgf_EW)

设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵[P^(-1)AP]^T属于特征值λ的特征向量是( )A.[P^(-1)]α B.[P^T]α C.Pα D.{[P^(-1)]^T}α
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵[P^(-1)AP]^T属于特征值λ的特征向量是( )
A.[P^(-1)]α B.[P^T]α C.Pα D.{[P^(-1)]^T}α

设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵[P^(-1)AP]^T属于特征值λ的特征向量是( )A.[P^(-1)]α B.[P^T]α C.Pα D.{[P^(-1)]^T}α
由已知知 Aα = λα
所以 P^TA(P^T)^-1 P^Tα = λP^Tα
所以 P^TA(P^-1)^T P^Tα = λP^Tα
所以 (P^-1AP)^T P^Tα = λP^Tα
(B) 正确

设矩阵(P^( -1) AP=B,
A=PBP^(-1)
=>
Aβ=PBP^(-1)β=λβ
所以BP^(-1)β=λP^(-1)β
所以B的特征向量是P^(-1)β
易知转置的特征向量和原矩阵特征向量相同
所以此题答案是P^(-1)β

设A是n阶实对称矩阵 P是n阶可逆矩阵 ,已知n维列向量β是属于特征值λ的特征限量,则矩阵(P^( -1) AP)倒置的上面问题只显示了一半设A是n阶实对称矩阵 P是n阶可逆矩阵 已知n维列向量β是属于特征 设A,B是n阶正定矩阵,则AB是:A.实对称矩阵.B.正定矩阵.C.可逆矩阵.D.正交矩阵 设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量a是A的属于特征值r的特征向量,则矩阵(P^-1AP)^T设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量a是A的属于特征值r的特征向量,则矩阵(P^-1AP) 线性代数中关于正定矩阵的一道题设A是n阶实对称矩阵,AB+B的转置乘A是正定矩阵,证明A可逆. 设A为N阶对称矩阵,B为N阶可逆矩阵,且B-1=BT,证明B-1AB是对称矩阵 设A是n阶可逆矩阵,证明,存在正定对称阵P以及正交矩阵U使得A=PU 设A是一个n阶矩阵,P是一个n阶可逆矩阵,证明:具体题目请看图片 设A是n阶正定矩阵,求证:存在n阶可逆矩阵P使得A=PtP 设A是n阶实对称阵,AB+B的转置A是正定矩阵,证明A是可逆矩阵. 设A是n阶实对称阵,AB+B的转置A是正定矩阵,证明A是可逆矩阵. 设A是n阶实对称阵,AB+B的转置A是正定矩阵,证明A是可逆矩阵 A是n阶实对称矩阵 设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵[P^(-1)AP]^T属于特征值λ的特征向量是( )A.[P^(-1)]α B.[P^T]α C.Pα D.{[P^(-1)]^T}α 设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量a是A的属于特征值r的特征向量,则矩阵(P^-1AP)^T属于特征值r的特征向量是( ).(A)P^-1a (B)P^Ta (C)Pa (D)(P^-1)^Ta 刘老师:设A是n阶反对称矩阵,E是n阶单位矩阵.证明:e+a可逆 怎么证明? 设矩阵A与P都是n阶矩阵,且A为对称矩阵,证明P'AP也是 对称矩阵. 设矩阵A和P都是n阶矩阵,且A为对称矩阵,证明:P^TAP也是对称矩阵 设A是n阶实对称证明a可逆的充分必要条件是存在n阶实矩阵b使得AB+B转置A是正定