设a.b均为n阶(n≥2)可逆矩阵,证明(AB)*=A*B*

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:35:44
设a.b均为n阶(n≥2)可逆矩阵,证明(AB)*=A*B*
xN@_ޠM<%L@ %FcE8bvq(hI/ov3ߦiY(t(OX9*5AA ׼*PbEb6=M OaZoU"!Vt¹j̺ȡƇz:6j Q:Q7 `IěA?ƢAjPى-Uw'ȼmzkůGb8oA!;`ibw\ A,T nAZ}jdQ^95+"1"0$g(I;gr/t

设a.b均为n阶(n≥2)可逆矩阵,证明(AB)*=A*B*
设a.b均为n阶(n≥2)可逆矩阵,证明(AB)*=A*B*

设a.b均为n阶(n≥2)可逆矩阵,证明(AB)*=A*B*
因为A*A=AA*=IAIE,所以A*=A^(-1)IAI.A^(-1)表示A的逆,IAI表示A的行列式.
(AB)*=(AB)^(-1)IABI=B^(-1) A^(-1)IABI=B^(-1)IBI A^(-1)IAI=B*A*
这里证明了(AB)*=B*A*
你的题目是要证明(AB)*=A*B*
那不两个伴随矩阵乘法可以交换了?是题目错了吧!
举个反例:如A=(1 2; 0 1),B=(1 0;3 1)其中;表示分行,即A 是俩行俩列的矩阵,第一行是1和2,第二行是0和1.A,B符合条件,但是等式(AB)*=A*B*不成立.