如何证明sin(A-B)*sin(A+B)=sinA²-sinB²

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 05:06:31
如何证明sin(A-B)*sin(A+B)=sinA²-sinB²
x){ީ/7>W뤩fh;ijťFֺ@iTO>; lܾžϧx|ӞiO'<ݾi뚧{m5󋍜tAH{6gt!R6yvPgـ9[m4 pԂi ^bx[HʁF(DbC$0lA b^JD h@,] ~S7X~OZFCCd,`AG&.\!A8

如何证明sin(A-B)*sin(A+B)=sinA²-sinB²
如何证明sin(A-B)*sin(A+B)=sinA²-sinB²

如何证明sin(A-B)*sin(A+B)=sinA²-sinB²
左边用积化和差公式=(cos2B-cos2A)/2=(1-2sinB^2-1+2sinA^2)/2=sinA^2-sinB^2

sin(A-B)*sin(A+B)
=(sinAcosB-sinBcosA)*(sinAcosB+sinBcosA)
=sinA²cosB²-sinB²cosA²
=sinA²(1-sinB²)-sinB²(1-sinA²)
=sinA²-sinB²

sina(A-B)*sin(A+B)=[cos(A+B-A+B)-cos(A+B+A-B)]/2
=(cos2B-cos2A)/2=[1-2sinB*sinB-1+2sinA*sinA]/2
=sinA*sinA-sinB*sinB