f(x)=(x²+2x+3)/x,求值域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 00:02:49
f(x)=(x²+2x+3)/x,求值域
xRJ@ ILM &q Rt3)L$miVl>U*6O iwd:Ђf=sE$"Z_ޑu$g% );!n6cOM"2v 2,t#+Bo<2y4%(V+:XY|1OS 7ޘ4>Ai1*I 5$:n`$ !W> 6xl C6md MGܺ0A$Y,qk ˍ XBd WtɓeQ;%EnګPxt+T_L؉#ew`[/Yr󮤉zLYFTvU^d.𙋐g.ra~Mpd

f(x)=(x²+2x+3)/x,求值域
f(x)=(x²+2x+3)/x,求值域

f(x)=(x²+2x+3)/x,求值域
方法多样.
解法一(判别式法):y=(x²+2x+3)/x,
yx=x²+2x+3,
即x²+(2-y)x+3=0,
令⊿≥0,即可解出y的范围.

解法二(基本不等式):f(x)=x+3/x +2
因为 x 与3/x 同号,
所以 |x +3/x|=|x| +|3/x|≥2√(|x|·|3/x|)=2√3
所以 x+3/x ≥2√3或 x+3/x≤-2√3
从而 f(x) ≥2+2√3或 f(x)≤2-2√3
即值域为(-∞,2-2√3]∪[2+2√3,+∞)

解法三(导数法,略)

f(x)=(x²+2x+3)/x=x+3/x+2
当x>0时,x+3/x≧2√3,f(x)≧2+2√3
当x<0时,x+3/x≦-2√3,f(x)≦2-2√3
f(x)=(x²+2x+3)/x的值域为{-∞,2-2√3}∪{2+2√3,+∞}