分式运算,急ab=1,(1/(a+1)+1/b+1)^2008

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:58:25
分式运算,急ab=1,(1/(a+1)+1/b+1)^2008
x){tOaibF~320I*P ĭEΆT+pJV Th"+iCid9Cd~qAbԍ6`N4n H"y0SDP Us'TwƒNP mh`dG;NX]S^_lzDK6B{dA+

分式运算,急ab=1,(1/(a+1)+1/b+1)^2008
分式运算,急
ab=1,(1/(a+1)+1/b+1)^2008

分式运算,急ab=1,(1/(a+1)+1/b+1)^2008
(1/(a+1)+1/b+1)^2008
={(a+1+b+1)/(ab+a+b+1)}^2008
={(a+b+2)/(a+b+2)}^2008
=1^2008
=1

[1/(a+1)+1/(b+1)]^2008
=[(b+1)/(a+1)(b+1)+(a+1)/(a+1)(b+1)]^2008
=[(b+1+a+1)/(ab+a+b+1)]^2008
=[(a+b+2)/(a+b+2)]^2008
=1^2008
=1

ab=1
1/a=b
[1/(a+1)+1/b+1]^2008不对吧
应该是[1/(a+1)+1/(b+1)]^2008
=[1/(a+1)+1/(1/a+1)]^2008
=[1/(a+1)+a/(a+1)]^2008
=[(a+1)/(a+1)]^2008
=1^2008=1

1