已知:a.b都是正数,求证a^4+b^4大于等于a^3b+ab^3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:27:05
已知:a.b都是正数,求证a^4+b^4大于等于a^3b+ab^3
x){}K^6}6cMݠlcӋq&Iq&O,N gglTOn;Jmy6Y`=PtyP@>X-D.H( QRޑ VABE7,g5ZtL ؅QRFt6<ٽaXD= T ZT\g.

已知:a.b都是正数,求证a^4+b^4大于等于a^3b+ab^3
已知:a.b都是正数,求证a^4+b^4大于等于a^3b+ab^3

已知:a.b都是正数,求证a^4+b^4大于等于a^3b+ab^3
证明:
(a^4+b^4)-(a^3b+ab^3)
=(a^4-a^3b)-(ab^3-b^4)
=a^3(a-b)-b^3(a-b)
=(a-b)(a^3-b^3)
=(a-b)^2(a^2+ab+b^2)
因为(a-b)^2≥0,
a.b都是正数,所以a^2+ab+b^2>0
所以(a-b)^2(a^2+ab+b^2)≥0
所以(a^4+b^4)-(a^3b+ab^3)≥0
a^4+b^4大于等于a^3b+ab^3