已知数列an的各项均为正数,前n项和为Sn,且满足2Sn=an^2+n-4,(1)求证an为等差数列 (2)求an的通项公式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 10:29:26
已知数列an的各项均为正数,前n项和为Sn,且满足2Sn=an^2+n-4,(1)求证an为等差数列 (2)求an的通项公式
xUN@~*UC֦jy+\qPsDH!i@!jK ]Pvx@P(zgo۝qr*Z?3gͲݍyVv~'?+*la eΛz6-{BWlmL9t @(ZuL`QaY "`;oގ>4FRGG44{I+j5- }fk׽ ~Ӓ ȭBQpR Ht!7WN{dv'/ T/J}AfeWlNv0K |>EAtGbm `+zr43e)rr9B\ؠXĞ F

已知数列an的各项均为正数,前n项和为Sn,且满足2Sn=an^2+n-4,(1)求证an为等差数列 (2)求an的通项公式
已知数列an的各项均为正数,前n项和为Sn,且满足2Sn=an^2+n-4,(1)求证an为等差数列 (2)求an的通项公式

已知数列an的各项均为正数,前n项和为Sn,且满足2Sn=an^2+n-4,(1)求证an为等差数列 (2)求an的通项公式
2Sn=an^2+n-4
令n=1
有2s1=2a1=a1²-3
得:a1=3
2S(n-1)=a(n-1)^2+n-5
两式相减,有
2an=an^2-a(n-1)^2+1
移项,整理得:
an^2-2an+1=a(n-1)^2
由a1=3,而{an}的各项都为正数,则公差d>0,an≥3
两边取算术平方要,有
an-1=a(n-1)
故意{an}为等差数列
an=3+(n-1)=n+2

∵2Sn=an^2+n-4
∴2S1=a1^2-3
∴a1=3或a1=-1(舍去)
∴2Sn-1=an-1^2+n-5
两式相减得:2(Sn-Sn-1)=an^2-an-1^2+1
即:2an=an^2-an-1^2+1
∴(an-1)^2=a(n-1)^2
∴an-1=a(n-1)
∴an-a(n-1)=1<...

全部展开

∵2Sn=an^2+n-4
∴2S1=a1^2-3
∴a1=3或a1=-1(舍去)
∴2Sn-1=an-1^2+n-5
两式相减得:2(Sn-Sn-1)=an^2-an-1^2+1
即:2an=an^2-an-1^2+1
∴(an-1)^2=a(n-1)^2
∴an-1=a(n-1)
∴an-a(n-1)=1
∴an是等差数列 且an=3+(n-1)*1=n+2
告诉你 其实求数列的通项公式就是巧妙的运用构造法及an与Sn的关系!!

收起

2Sn=an^2+n-4
2S(n-1)=a²(n-1)+n-1-4
两式相减得:2an=an^2-a²(n-1)+1,即(an-1)²=a(n-1)² ∴an=a(n-1)+1即an-a(n-1)=1∴为等差数列
an=a1+(n-1)d=-3+n-1=n-4

2a(1)=2s(1)=[a(1)]^2 + 1 - 4, 0 = [a(1)]^2 - 2a(1) -3 = [a(1)+1][a(1)-3],
a(1)=-1(舍), a(1)=3.
2s(n+1)=[a(n+1)]^2 + (n+1) - 4,
2a(n+1)=2s(n+1)-2s(n)=[a(n+1)]^2 - [a(n)]^2 + 1,
0=[a(n+1)...

全部展开

2a(1)=2s(1)=[a(1)]^2 + 1 - 4, 0 = [a(1)]^2 - 2a(1) -3 = [a(1)+1][a(1)-3],
a(1)=-1(舍), a(1)=3.
2s(n+1)=[a(n+1)]^2 + (n+1) - 4,
2a(n+1)=2s(n+1)-2s(n)=[a(n+1)]^2 - [a(n)]^2 + 1,
0=[a(n+1)]^2 - 2a(n+1) + 1 - [a(n)]^2 = [a(n+1)+a(n)-1][a(n+1)-a(n)-1],
a(n+1)=-a(n)+1或a(n+1)=a(n)+1,
若a(n)>=1,则只能a(n+1)=a(n)+1, {a(n)}是首项为a(1)=3,公差为1的等差数列.a(n)=3+(n-1)=n+2.
若0因此,0所以,总有a(n+1)>=1, a(n)=n+2.

收起