已知数列an中,a1=3/2,an≠0,且an=[3a(n-1)]/[3+2a(n-1)],则a2012=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 20:39:57
已知数列an中,a1=3/2,an≠0,且an=[3a(n-1)]/[3+2a(n-1)],则a2012=
已知数列an中,a1=3/2,an≠0,且an=[3a(n-1)]/[3+2a(n-1)],则a2012=
已知数列an中,a1=3/2,an≠0,且an=[3a(n-1)]/[3+2a(n-1)],则a2012=
an=[3a(n-1)]/[3+2a(n-1)]
3an+ 2an.a(n-1) = 3a(n-1)
1/a(n-1) +2 = 1/an
1/an -1/a(n-1) = 2
1/an-1/a1 = 2(n-1)
1/an = 2(n-1) + 2/3
= 2(3n-2)/3
an = 3/(2(3n-2))
a2012 = 3/12068
a2=3a1/(3+2a1)=(3*3/2)/(3+2*3/2)=3/4,
a3=3a2/(3+2a2)=(3*3/4)/(3+2*3/4)=3/6,
a4=3a3/(3+2a3)=(3*3/6)/(3+2*3/6)=3/8,
假设 an=3/(2n),当n=1时显然成立;
当a(n-1)=3/[2(n-1)]时,
an=[3a(n-1)]/[3+2a(n-...
全部展开
a2=3a1/(3+2a1)=(3*3/2)/(3+2*3/2)=3/4,
a3=3a2/(3+2a2)=(3*3/4)/(3+2*3/4)=3/6,
a4=3a3/(3+2a3)=(3*3/6)/(3+2*3/6)=3/8,
假设 an=3/(2n),当n=1时显然成立;
当a(n-1)=3/[2(n-1)]时,
an=[3a(n-1)]/[3+2a(n-1)]
={3*3/[2(n-1)]}/{3+2*3/[2(n-1)]}
=3/(2n),
∴假设正确,即an=3/(2n),
∴a2012=3/(2*2012)=3/4024
收起
an=[3a(n-1)]/[3+2a(n-1)]得出
1/an=[3+2a(n-1)]/[3a(n-1)]=2/3+1/[a(n-1)],所以1/an是等差数列
1/an=2/3*n
an=3/(2n)
a2012=3/4024