计算1\1×2+1\2×3+1\3×4+……+1\49×50要简便计算,有过程更好,急用

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 08:10:47
计算1\1×2+1\2×3+1\3×4+……+1\49×50要简便计算,有过程更好,急用
xTN@~Y /phM1 A $`(pML@ch"qtfgBzֽs47Mij"䩡L U|[QWS#;k9]O\א(&gNbYsSm'B:e? )),QSN@S ؅&H y-UDPhpJLdU܁VHAqGle67RI`hjd6_1Sw[eEU5i$yQ#@Y#~C5%=֑h `l|Q r0Jx,cqQ7g|l:%ofrc yaaډeشe68u{F`K:tYp]kwʒ{!j v',Z|O{e|6*(

计算1\1×2+1\2×3+1\3×4+……+1\49×50要简便计算,有过程更好,急用
计算1\1×2+1\2×3+1\3×4+……+1\49×50要简便计算,有过程更好,急用

计算1\1×2+1\2×3+1\3×4+……+1\49×50要简便计算,有过程更好,急用
1\1×2+1\2×3+1\3×4+……+1\49×50
=1-1/2+1/2-1/3+1/3-1/4+……+1/49-1/50
=1-1/50
=49/50

1\1×2+1\2×3+1\3×4+……+1\49×50
=1-1/2+1/2-1/3+1/3-1/4+……+1/49-1/50
=1-1/50
=49/50

49/50


1/1X2+1/2X3+1/3X4+....+1/49×50
=(1-1/2)+(1/2-1/3)+................+(1/49-1/50)
=1-1/50
=49/50
1/1X2+1/2X3+1/3X4+....+1/[n(n+1)]
=(1-1/2)+(1/2-1/3)+................+[(1/n/(n+1)...

全部展开


1/1X2+1/2X3+1/3X4+....+1/49×50
=(1-1/2)+(1/2-1/3)+................+(1/49-1/50)
=1-1/50
=49/50
1/1X2+1/2X3+1/3X4+....+1/[n(n+1)]
=(1-1/2)+(1/2-1/3)+................+[(1/n/(n+1)]
=1-1/(n+1)
=n/(n+1)
类似:1/[a*(a+n)]=(1/n)*[1/a-1/(a+n)]
例子:
1/56=1/(7*8)=1/7-1/8
1/12=1/(2*6)=(1/4)*[1/2-1/6]
....................
等等
这个式子是很有用的
以上希望对你有所帮助~

收起

1\1×2+1\2×3+1\3×4+……+1\49×50
=(1/1 - 1/2) + (1/2 - 1/3)+(1/3-1/4)...+(1/49 - 1/50)
=1- 1/2 + 1/2 - 1/3 + 1/3...+ 1/49 - 1/50
=1- 1/50
=49/50