计算1/(1×3)+1/(3×5)+1/(5×7)+1/(7×9)+.+1/(19×21)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 22:56:56
计算1/(1×3)+1/(3×5)+1/(5×7)+1/(7×9)+.+1/(19×21)
x){nu 5 O72O73LO73O1 -O72ԴI*'W~ E>tO1P16Ҧ@Qk)22 @@T $l_\gu ckg~O5 a=`ZPEqZPx>eŋM/|ں7 P h@UI aT.ȣ88hGs*-J

计算1/(1×3)+1/(3×5)+1/(5×7)+1/(7×9)+.+1/(19×21)
计算1/(1×3)+1/(3×5)+1/(5×7)+1/(7×9)+.+1/(19×21)

计算1/(1×3)+1/(3×5)+1/(5×7)+1/(7×9)+.+1/(19×21)
原式=1/2(1/1-1/3+1/3-1/5+1/5-1/7+.+1/19-1/21)
=1/2*20/21
=20/42
=10/21

=0.5*(1/1-1/3+1/3-1/5+。。。+1/19-1/21)
=0.5*(1-1/21)
=10/21

10/21 用裂项公式

1/(1x3)+1/(3x5)+1/(5x7)+......+1/(19x21)=1/2x(1-1/3+1/3-1/5+1/5-1/7+.......+1/19-1/21)
=1/2x(1-1/21)=10/21