先化简,再求值,先化简,再求值,【1/(x-y)】-【1/(x+y)】/【xy²/(x²-y²)】,其中x=√2+1,y=√2-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 23:38:55
先化简,再求值,先化简,再求值,【1/(x-y)】-【1/(x+y)】/【xy²/(x²-y²)】,其中x=√2+1,y=√2-1
x͑J0_% HCS@>ʠ>i`& A/ a٧KK $*;!?9?'q,z7IOOe^Ƈ8$Qv3~JU;0Z]wUB!(>];1v&Hb]C[ b \v\&oN?! ٟ '

先化简,再求值,先化简,再求值,【1/(x-y)】-【1/(x+y)】/【xy²/(x²-y²)】,其中x=√2+1,y=√2-1
先化简,再求值,
先化简,再求值,【1/(x-y)】-【1/(x+y)】/【xy²/(x²-y²)】,其中x=√2+1,
y=√2-1

先化简,再求值,先化简,再求值,【1/(x-y)】-【1/(x+y)】/【xy²/(x²-y²)】,其中x=√2+1,y=√2-1
先化简,再求值:【1/(x-y)】-【1/(x+y)】/【xy²/(x²-y²)】,其中x=√2+1,
y=√2-1
【1/(x-y)】-【1/(x+y)】/【xy²/(x²-y²)】
=(x+y-x+y)/(x^2-y^2)*(x^2-y^2)/(xy^2)
=2y/(xy^2)
=2/(xy)
=2/(√2+1)(√2-1)
=2 .

〔(5/(a-2))-a-2〕=(3 a)(3-a)/(a-2) 消除同类项可知 原式等于 (-1)/2(3 a)=(-1)/2√3=-√3/6 望采纳 〔(a-3