求lim[(2n-1)/(2n+1)]^n,n趋于无穷

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 15:00:26
求lim[(2n-1)/(2n+1)]^n,n趋于无穷
x){)'37Z(ON{: 5ct^l~WnI*'A~ ?ٌq:=l^˙tv|>e!B@5*M*T60ԯXa 6UlZ[4#t!PP 5(V+Z(&S љP 6O/.H̳ +; C,8‚

求lim[(2n-1)/(2n+1)]^n,n趋于无穷
求lim[(2n-1)/(2n+1)]^n,n趋于无穷

求lim[(2n-1)/(2n+1)]^n,n趋于无穷
这是1^∞型极限,利用重要极限lim(x→∞) [1+(1/x)]^x=e
lim(x→∞) [(2n-1)/(2n+1)]^n
=lim(x→∞) [1-2/(2n-1)]^n
=lim(x→∞) [1-2/(2n-1)]^{[-(2n-1)/2]*[-2n/(2n-1)]}
=e^ {lim(x→∞) [-2n/(2n-1)]}
=e^(-1)
=1/e

lim[(2n-1)/(2n+1)]^n
=lim[1-2/(2n+1)]^n
=1