解分式方程:1/X-2+1/X-6=1/X-7+1/X-11/X-2+1/X-6=1/X-7+1/X-11/(x-2)-1/(x-1)=1/(x-7)-1/(x-6)(x-1-x+2)/(x-2)(x-1)=(x-6-x+7)/(x-7)(x-6)1/(x-2)(x-1)=1/(x-7)(x-6)(x-2)(x-1)=(x-7)(x-6)x^2-3x+2=x^2-13x+4213x-3x=42-210x=40x=4 为什么要移向才能解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 17:09:54
解分式方程:1/X-2+1/X-6=1/X-7+1/X-11/X-2+1/X-6=1/X-7+1/X-11/(x-2)-1/(x-1)=1/(x-7)-1/(x-6)(x-1-x+2)/(x-2)(x-1)=(x-6-x+7)/(x-7)(x-6)1/(x-2)(x-1)=1/(x-7)(x-6)(x-2)(x-1)=(x-7)(x-6)x^2-3x+2=x^2-13x+4213x-3x=42-210x=40x=4 为什么要移向才能解
xSN@.mhS6-D?ݰAk4FFAtX ޙňĵ.zg9Zk7KFz5;٨]݌y=MU+RmyLE=1U ށb\XD:7/L} hmA6!B6umC8xಇJ,3{ˌYp}EtVx#> pI M2R _rꆍ?ETt(g#PiM9><BmԸ,a6JRKAY\d1EiATzi>CM@=mNuo~W t=P4Sdoot}jœh W!?8?wi" WJ^ee-gGdb~,jޕŕ&cI;Kw3*

解分式方程:1/X-2+1/X-6=1/X-7+1/X-11/X-2+1/X-6=1/X-7+1/X-11/(x-2)-1/(x-1)=1/(x-7)-1/(x-6)(x-1-x+2)/(x-2)(x-1)=(x-6-x+7)/(x-7)(x-6)1/(x-2)(x-1)=1/(x-7)(x-6)(x-2)(x-1)=(x-7)(x-6)x^2-3x+2=x^2-13x+4213x-3x=42-210x=40x=4 为什么要移向才能解
解分式方程:1/X-2+1/X-6=1/X-7+1/X-1
1/X-2+1/X-6=1/X-7+1/X-1
1/(x-2)-1/(x-1)=1/(x-7)-1/(x-6)
(x-1-x+2)/(x-2)(x-1)=(x-6-x+7)/(x-7)(x-6)
1/(x-2)(x-1)=1/(x-7)(x-6)
(x-2)(x-1)=(x-7)(x-6)
x^2-3x+2=x^2-13x+42
13x-3x=42-2
10x=40
x=4 为什么要移向才能解出来

解分式方程:1/X-2+1/X-6=1/X-7+1/X-11/X-2+1/X-6=1/X-7+1/X-11/(x-2)-1/(x-1)=1/(x-7)-1/(x-6)(x-1-x+2)/(x-2)(x-1)=(x-6-x+7)/(x-7)(x-6)1/(x-2)(x-1)=1/(x-7)(x-6)(x-2)(x-1)=(x-7)(x-6)x^2-3x+2=x^2-13x+4213x-3x=42-210x=40x=4 为什么要移向才能解
先看一个式子.1/n - 1/(n+1)=1 / n(n+1).这个等式容易理解,通分就行了.在原式中,x-2比x-1小1,x-7比x-6小1.所以可以把原等式进行移项,目的是通分后使分子为1,从而达到使分子降次的目的,最终把原方程转化为一元一次方程.这样方程就解出来了.

1/X-2+1/X-6=1/X-7+1/X-1
1/(x-2)-1/(x-1)=1/(x-7)-1/(x-6)
(x-1-x+2)/(x-2)(x-1)=(x-6-x+7)/(x-7)(x-6)
1/(x-2)(x-1)=1/(x-7)(x-6)
(x-2)(x-1)=(x-7)(x-6)
x^2-3x+2=x^2-13x+42
13x-3x=42-2
10x=40
x=4

4

1/X-2+1/X-6=1/X-7+1/X
x=4

x=5