f(x)=(k-2)x^2 +(k-3)x+3 是偶函数,则f(x)的递减区间是什么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 01:43:02
f(x)=(k-2)x^2 +(k-3)x+3 是偶函数,则f(x)的递减区间是什么
x)K{N[l]#͊8#m XBXٌO=ml34*4jy0i{Ӟ]/o*y"}_`g3Pn[i 2,֦3sLKXٶs{2XXɎ]Ov/012_.iN勽[w>_ȆiOO'L| g]w|k?Dٌ}[a A6yvpsOt]3選w%fb-M_|vX$'K

f(x)=(k-2)x^2 +(k-3)x+3 是偶函数,则f(x)的递减区间是什么
f(x)=(k-2)x^2 +(k-3)x+3 是偶函数,则f(x)的递减区间是什么

f(x)=(k-2)x^2 +(k-3)x+3 是偶函数,则f(x)的递减区间是什么
f(x)=(k-2)x^2 +(k-3)x+3 是偶函数,
则f(-x)=f(x)
(k-2)*(-x)^2+(k-3)*(-x)+3
=(k-2)x^2 +(k-3)x+3
解得k=3,
从而f(x)=x^2+3,为以(0,3)为顶点,y轴为对称轴,
开口向上的抛物线,
显然f(x)的递减区间为x

由它是偶函数,得k=3,则F(x)=x^2+3,递减区间为[负无穷,0]