当m为何值时,关于x的方程2/x-2+mx/x^2-4=3/x+2会产生增根给下过程当m为何值时,关于x的方程2/(x-2)+mx/(x^2-4)=3/(x+2)会产生增根

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 13:05:49
当m为何值时,关于x的方程2/x-2+mx/x^2-4=3/x+2会产生增根给下过程当m为何值时,关于x的方程2/(x-2)+mx/(x^2-4)=3/(x+2)会产生增根
xWR@~\&CVB7>3i8M.ZlPWTZ8V.6г!!Zδz!osIjvX3|dM{T&clQw/[QHF0JYj4;^h]C(QDAJ)BM=yz N{%qtZCx&֠AWi-g6-c^&MJb}0/5.fZ$4#b)"%ʑ0Y:p2OSm! G9e jn\շ!5 4~/0H=)٬;@19g?r(:UZ/mغEx8\+ awZ !"aC:Jrw)(#cVQT>特dK|-̾+v_pf,ig84VyD̪c Ƞ:ԶQ+r[}XE;U }&le vpN Jx@ H#FQ03$"W 4By>11]rJ콇o738}rs[k^lث'<]'f ~L2 <Čx5wRL7ɛ"28|{nXA @2aFM g 1^dkKܑn'؛C,B PItqzj\/? _\'AYB({;Y楒@'1ꬎqON, cm:0/[v8+j YTc{Gz+ܨԭprkBOXL

当m为何值时,关于x的方程2/x-2+mx/x^2-4=3/x+2会产生增根给下过程当m为何值时,关于x的方程2/(x-2)+mx/(x^2-4)=3/(x+2)会产生增根
当m为何值时,关于x的方程2/x-2+mx/x^2-4=3/x+2会产生增根
给下过程
当m为何值时,关于x的方程2/(x-2)+mx/(x^2-4)=3/(x+2)会产生增根

当m为何值时,关于x的方程2/x-2+mx/x^2-4=3/x+2会产生增根给下过程当m为何值时,关于x的方程2/(x-2)+mx/(x^2-4)=3/(x+2)会产生增根
2/[X-2]+MX/[X^2-4]=3/[X+2]
通分,去分母得:2(X+2)+MX=3(X-2)
2X+4+MX=3X-6
(M-1)X=-10
由 2/[X-2]+MX/[X^2-4]=3/[X+2]可知,当X=2或-2时方程有增根,
把X=2代入(M-1)X=-10,得
2(M-1)=-10
2M-2=-10
M=-4
把X=-2代入(M-1)X=-10,得
-2(M-1)=-10
-2M+2=-10
M=6
因此当M=-4或6时,关于X的方程2/[X-2]+MX/[X^2-4]=3/[X+2]会产生增根

少一个,还有一个是m≠1
两边乘(x+2)(x-2)
2(x+2)+mx=3(x-2)
2x+4+mx=3x-6
(1-m)x=10
若m=1,1-m=0
等式不成立。无解

去分母,得:2(x+2)(x+3)+mx(x+3)=3(x+2)(x-2)
(1)当x=-2时,解得m=0,将m=0代入方程中的x=12,所以不符合,舍去;
(2)当x=2时,解得m=-4,所以方程有增根;
(3)当x=-3时,解得15=0,m=0,无解,舍去
∴当m=-4时,关于x的方程有解...

全部展开

去分母,得:2(x+2)(x+3)+mx(x+3)=3(x+2)(x-2)
(1)当x=-2时,解得m=0,将m=0代入方程中的x=12,所以不符合,舍去;
(2)当x=2时,解得m=-4,所以方程有增根;
(3)当x=-3时,解得15=0,m=0,无解,舍去
∴当m=-4时,关于x的方程有解

收起

2/(x-2)+mx/(x^2-4)=3/(x+2)去分母得:
2x+4+mx=3x-6
移项整理得:(m-1)x=-10
所以:当m=1时,关于x的方程2/(x-2)+mx/(x^2-4)=3/(x+2)会产生增根
分母不能为0,所以x不能为2和-2,将它们代入(m-1)x=-10中可得,m=-4;m=6
所以:当m=-4或6时,关于x的方程2/(x...

全部展开

2/(x-2)+mx/(x^2-4)=3/(x+2)去分母得:
2x+4+mx=3x-6
移项整理得:(m-1)x=-10
所以:当m=1时,关于x的方程2/(x-2)+mx/(x^2-4)=3/(x+2)会产生增根
分母不能为0,所以x不能为2和-2,将它们代入(m-1)x=-10中可得,m=-4;m=6
所以:当m=-4或6时,关于x的方程2/(x-2)+mx/(x^2-4)=3/(x+2)会产生增根
所以:当m=1,m=-4,m=6时,关于x的方程2/(x-2)+mx/(x^2-4)=3/(x+2)会产生增根

收起

当m=1时 会产生曾根 先去分母得 2(X+2)+MX=3(X-2) (2+m)x+4=3x-6 2+m=3 m=1

方程2/(x-2)+mx/(x^2-4)=3/(x+2)可化为:
2(x+2)+mx=3(x-2)
解得:
x=10/(1-m)
由原方程式可知:
x-2=0或x+2=0时,即:x=2或x=-2时,方程有增根,因此,
10/(1-m)=2或10/(1-m)=-2时方程有增根,解得:
m=-4或m=6
所以,当m=-4或6时,方程2/(...

全部展开

方程2/(x-2)+mx/(x^2-4)=3/(x+2)可化为:
2(x+2)+mx=3(x-2)
解得:
x=10/(1-m)
由原方程式可知:
x-2=0或x+2=0时,即:x=2或x=-2时,方程有增根,因此,
10/(1-m)=2或10/(1-m)=-2时方程有增根,解得:
m=-4或m=6
所以,当m=-4或6时,方程2/(x-2)+mx/(x^2-4)=3/(x+2)会产生增根。

收起

2/[X-2]+MX/[X^2-4]=3/[X+2]
通分,去分母得:2(X+2)+MX=3(X-2)
2X+4+MX=3X-6
(M-1)X=-10
由 2/[X-2]+MX/[X^2-4]=3/[X+2]可知,当X=2或-2时方程有增根,
把X=2代入(M-1)X=-10,得
2(M-1)=-10
2M-2=-10

全部展开

2/[X-2]+MX/[X^2-4]=3/[X+2]
通分,去分母得:2(X+2)+MX=3(X-2)
2X+4+MX=3X-6
(M-1)X=-10
由 2/[X-2]+MX/[X^2-4]=3/[X+2]可知,当X=2或-2时方程有增根,
把X=2代入(M-1)X=-10,得
2(M-1)=-10
2M-2=-10
M=-4
把X=-2代入(M-1)X=-10,得
-2(M-1)=-10
-2M+2=-10
M=6
因此当M=-4或6时,关于X的方程2/[X-2]+MX/[X^2-4]=3/[X+2]会产生增根

收起