在数列{an}中,a1=a+1/a(a>0),a(n+1)=a1-1/an(1)求a2,a3的值,并猜想an表达式(2)用数学归纳法证明.
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 03:16:37
xœJ1_&Ӛ(⢙)\0R֪H7nDJ?/d7Xۅ&=L>
dEe~ @9x4k.٠,<:q>nKqzx"D:q d4+$qhaUp;D(D/N4|fO=TL 8>pf`,`EKcy:w>/
在数列{an}中,a1=a+1/a(a>0),a(n+1)=a1-1/an(1)求a2,a3的值,并猜想an表达式(2)用数学归纳法证明.
在数列{an}中,a1=a+1/a(a>0),a(n+1)=a1-1/an(1)求a2,a3的值,并猜想an表达式(2)用数学归纳法证明.
在数列{an}中,a1=a+1/a(a>0),a(n+1)=a1-1/an(1)求a2,a3的值,并猜想an表达式(2)用数学归纳法证明.
(1)a2 = a1-1/a1 = (a^4+a^2+1)/a(a^2+1)
a3=a2-1/a2 = (a^8+a^6+a^4+a^2+1)/a(a^2+1)(a^4+a^2+1)
猜想an = (a^2^n+a^(2^n-2)+...+1)/a(a^2+1)(a^4+a^2+1)(a^2^(n-1)+a^(2^(n-1)-2)...+1)
(2)需要证明(a^2^n+a^(2^n-2)+...+1)^2 - [a(a^2+1)(a^4+a^2+1)(a^2^(n-1)+a^(2^(n-1)-2)...+1)]^2 =a^2^(n+1)+a^(2^(n+1)-2)+...+1.
为方便,设p(n)=a^2^n+a^(2^n-2)+...+1,n>=1,即要证明
p(n)^2-[ap(1)p(2)...p(n-1)]^2=p(n+1),n>=2.
当n=1时,p(1)^2-a^2=(a^2+1)^2-a^2=a^4+a^2+1,结论成立.
容易验证n=2时结论成立.
使用归纳法,假设结论对n=k成立,p(k)^2-[ap(1)p(2)...p(k-1)]^2=p(k+1),
当n=k+1时,
在数列{an}中.a1=3且a(n+1)=an^2,求an
在数列{an}中,a1=3,a(n+1)=an+n,求an
在数列{an}中,a1=3,a(n+1)=(3an+4)/(an+6),求an.
在数列{an}中,已知a1=-20,a(n+1)=an+4,则|a1|+|a2|+|a3|+...+|a20|=
在数列{an}中,已知a1=-20,a(n+1)=an+4,则|a1|+|a2|+|a3|+...+|a20|=
1、在数列{an}中,a1=1.a(n+1)=3an+2n+1.求an.2、在数列{an}中,a1=-1,a(n+1)=(3an-4)/[(an)-1].求an.
根据下列条件,确定数列{an}的通项公式1.在数列{an}中,a(n+1)=3an^2,a1=32.在数列{an}中,a1=2,a(n+1)=4an-3n+13.在数列{an}中,a1=8,a2=2,且满足a(n+2)-4a(n+1)+3an=0
在数列an中,若a1=4,4a(n+1)=an,则an= 在数列an中,若a1=4,4a(n+1)=an,则an=
已知在数列{an}中,a1=2,a(n+1)-3a(n)=3n,求an
在数列an中,a1=2,a(n+1)=an+ln(1+1/n),则an=
在数列{an}中a1=2,a(n+1)=an+In(1+1/n),则an=?
在数列{an}中,若a1=1,a ( n+1) =2an+1,则通项 an等于
在数列{an}中,a1=1,a(n+1)=3an+4^(n+1)求an
在数列{an}中,a1=2,a(n+1)=an+ln(1+1/n)an为多少
在数列an中,a1=1,且满足a(n+1)=3an +2n,求an
在数列an中,a1=2,a(n+1)=an/2+1/an,试证:根号2
在数列{an}中 a1=1 a(n+1)+an=6n 求通项an
在数列{an}中,a1=2,an除以a(n-1)=n除以n+1,求an