已知椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F(-根号2,0),点F到右顶点的距离为根号3+根号2,(一)求椭圆的方程(二)设直线l与椭圆交于AB两点,且与圆x2+y2=3/4相切,求三角形AOB面积的最大值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 08:55:43
已知椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F(-根号2,0),点F到右顶点的距离为根号3+根号2,(一)求椭圆的方程(二)设直线l与椭圆交于AB两点,且与圆x2+y2=3/4相切,求三角形AOB面积的最大值
xSMo@+>B0YJ)9CHpmEVSP 4 ( !Imcȏή9:-Ub!켙yoސH'?:c hLeI"Zogӹߊ0b"qvSW-=4WQW?}{:NpSUeVهLm~=P3䫚ѷ$\쨇'<=>n 5. DD"[ƓFL="D˃Y+JQ9]p{a$4ȍ.YfKjdHfԭ /p5a4IJqEu]rpvj&?cw~[uXm9(Z}z{jo̜S,v~"Qb&ᤄ^Ga^Tphe4c9U֕#ahej&{ \l) P+^odP'%

已知椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F(-根号2,0),点F到右顶点的距离为根号3+根号2,(一)求椭圆的方程(二)设直线l与椭圆交于AB两点,且与圆x2+y2=3/4相切,求三角形AOB面积的最大值
已知椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F(-根号2,0),点F到右顶点的距离为根号3+根号2,(一)求椭圆的方程(二)设直线l与椭圆交于AB两点,且与圆x2+y2=3/4相切,求三角形AOB面积的最大值

已知椭圆x2/a2+y2/b2=1(a>b>0)的左焦点为F(-根号2,0),点F到右顶点的距离为根号3+根号2,(一)求椭圆的方程(二)设直线l与椭圆交于AB两点,且与圆x2+y2=3/4相切,求三角形AOB面积的最大值
易知 a^2-b^2=2
a=3
x^2/9+y^2/7=1
圆的方程是x^2+y^2=3/4
可设切线方程为 x0x+y0y=3/4----(x0,y0)为直线与椭圆切点
联立x^2+y^2=3/4
{ 联立之后表达式有点.打得很累,你可以的,x用y表达,用韦达 开出来不复杂}
(|y1-y2|=63/2x0(可能算错了)
x0^2+y0^2=3/4
S=1/2(|y1-y2|)*y0/x0*r,(r=3^0.5/2)
下面的自己算,你可以的
自己弄吧 ,上了大学之后姐姐就变笨了、
大概先联立 在代换 然后解二次方程 还有用韦达
但是呢 我觉得设y=kx+b,联立可能更简单吧
我算了一下但是觉得自己算错了

已知椭圆C1:x2 a2 + y2 b2 =1(a>b>0)椭圆C2 已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0) 双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作直已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0)双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作 急已知双曲线x2/a2-y2/b2=1的离心率为根号6/2,椭圆x2/a2+y2/b2=1的离心率为 已知椭圆x2/a2+y2/b2=1,其离心率为根号3/2,则双曲线x2/a2-y2/b2=1的渐近线方程为 已知椭圆C:x2/a2+y2/b2=1(a>0,b>0)过点(1,2/3),且离心率为1/2.求椭圆的方程 已知椭圆的方程为X2/A2+Y2/B2=1(a>b>0)求椭圆的离心率 焦点坐标 焦距 已知椭圆x2/a2+y2/b2=1(a>b>0)的内接矩形ABCD(ABCD都在椭圆上)求此矩形的最大面 已知椭圆x2/a2+y2/b2的离心率为根号2/2,其焦点在圆x2+y2=1球椭圆方程 已知椭圆x2/a2+y2/b2=1与椭圆x2/25+y2/16=1有相同的长轴椭圆x2/a2+y2/b2=1的短轴长与椭圆y2/21+x2/9=1的短轴长相等,则求a2和b2的值? 已知双曲线x2/a2-y2/b2=1和椭圆x2/m2+y2/b2=1(a>0,m>b>0)的离心率乘积根号2那么以a,b,m为边长的三角形是什么三角形? 已知椭圆C:x2/a2+y2/b2=1与椭圆x2/4+y2/8=1有相同的离心率,则椭圆C的方程可能是()A、X2/8+Y2/4=m2(m不等于0)B、X2/16+Y2/64=1C、X2/8+Y2/2=1D、以上都不可能麻烦简单说明 已知C为椭圆X2/A2+Y2/B2=1(A>B>0)的半焦距,则(B+C)/A的取值范围 已知c是椭圆x2/a2+y2/b2=1(a>b>0)的半焦距,则(b+c)/a的取值范围是? 已知椭圆x2/a2+y2/b2=1与双曲线x2/12-y2/4=1有相同的焦点,且a+b=8,求椭圆的方程. 已知直线l:y=2x+m(m>0)与圆O:x2+y2=4相切,且过椭圆:(y2/a2)+(x2/b2)=1(a>b>0)的两个顶点.求椭圆方程. 已知方程为x2+y2=9的园经过椭圆(x2/a2)+(y2/b2)=1(a>b>0)的两个焦点和两个顶点,则椭圆的长轴长等于 已知半椭圆x2/b2+y2/a2=1(y>=0)和半圆x2+y2=b2(yb>0,如图,半椭圆x2/b2+y2/a2=1...已知半椭圆x2/b2+y2/a2=1(y>=0)和半圆x2+y2=b2(yb>0,如图,半椭圆x2/b2+y2/a2=1(y>=0)内切于矩形ABCD,且CD交于y轴于点G,点P是半圆x2+y2=b2(y>=0 已知P为椭圆x2/a2+y2/b2=1(a>b>0)上任一点,F1,F2为其左右焦点.|PF1|·|PF2|的最大值