求数列Cn=(2n+1)/(2^n+1)的前n项和(请写个详细的过程,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:21:14
求数列Cn=(2n+1)/(2^n+1)的前n项和(请写个详细的过程,
x[OAǿJYڙ9;;+-/ x;Zm *D./ D tWpvKhhe̞dKq0%!0H %a8Z˯sN^N/ն67sLc}/돡'[I'^)<~?Dyz{dR8^,g| exqWD}q/ 2Q0,GZI, 6Q<\IA!IPZI=)`Xp#K<*i)+-im-!382%(KmytE 7b6SƗ]ζjqm{do.-&mT̢)KlpXbLUJQ[TQĮ繲EWj" `E%9[&]@|..DK^v*D}<_5VÙ Y]ōKe)c(ș!7V edaH& q:0YV?W7guYJ; tps!ܛiC DOau2DG\IKbD5 w1b9ńXQtm:T~XYjH7m]P

求数列Cn=(2n+1)/(2^n+1)的前n项和(请写个详细的过程,
求数列Cn=(2n+1)/(2^n+1)的前n项和(请写个详细的过程,

求数列Cn=(2n+1)/(2^n+1)的前n项和(请写个详细的过程,
如图,先移项,具体如下:


错位相减法
设前n项和是Sn
则 Sn=3/2²+5/2³+ 7/2^4+.........+(2n-1)/2^n+ (2n+1)/2^(n+1) ①
①乘以1/2
(1/2)Sn= 3/2³+5/2^4+.............................+(2n-1)...

全部展开


错位相减法
设前n项和是Sn
则 Sn=3/2²+5/2³+ 7/2^4+.........+(2n-1)/2^n+ (2n+1)/2^(n+1) ①
①乘以1/2
(1/2)Sn= 3/2³+5/2^4+.............................+(2n-1)/2^(n+1)+(2n+1)/2^(n+2)
则 ①-②
(1/2)Sn=3/4+2【1/2³+1/2^4+............................+1/2^(n+1)】-(2n+1)/2^(n+2)
=3/4+【1/2²+1/2³+1/2^4+............................+1/2^n]-(2n+1)/2^(n+2)
=3/4+1/2-1/2^n-(2n+1)/2^(n+2)
∴ Sn=5/2-2/2^n-(2n+1)/2^(n+1)

收起