设f(n)=1+1/2+1/3+```1/n,用数列归纳法证明n+f(1)+```f(n-1)=nf(n),(n大于等于2,n属于N*)急
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:06:22
xPKN0J1Nk9l3."!"R@UABtC S%>%0(d+0v$z.<ϛyo&L'rۦqsz`&Ma9s34/Cs+xXu92Sp{_-I
|o7lJmE?dbsTQayD`y3(Lv^?(!m嫯Y[W\kIqiϹk!o.$-~TC$Im;Q(_B?pAȎ]M
设f(n)=1+1/2+1/3+```1/n,用数列归纳法证明n+f(1)+```f(n-1)=nf(n),(n大于等于2,n属于N*)急
设f(n)=1+1/2+1/3+```1/n,用数列归纳法证明n+f(1)+```f(n-1)=nf(n),(n大于等于2,n属于N*)
急
设f(n)=1+1/2+1/3+```1/n,用数列归纳法证明n+f(1)+```f(n-1)=nf(n),(n大于等于2,n属于N*)急
当n=2时带入原式成立假设n=k时原式也成立(k≥2)则有k+f(1)+.+f(k-1)=kf(k)所以k+1+f(1)+.f(k-1)+f(k)=1+f(k)+kf(k)=(k+1)f(k+1)所以n=k+1时也成立 获证 mio
设f(n)=1+2+3+.n,则(n-->+∞)limf(n)/[f(n)]=
设f(n)=1/n+1+1/n+2+1/n+3+……+1/3n(n∈N+),则f(n+1)-f(n)=?
设f(n)=1+2+3+..+3n,则f(2005)-f(2004)=?
设f(n)=1+1/2+1/3+…+1/2n 则f(n+1)-f(n)=?
设f(n)=1+1/2+1/3+...+1/(3n-1)(n属于N+),那么f(n+1)-f(n)=?
设f(n)=n+f(1)+f(2)+f(3)+……+f(n-1),用数学归纳法证明“n+f(1)+f(2)+……+f(n-1)=nf(n)时,第一步要证的等式是
设f(n)=1+1/2+1/3+...+1/n,使等式f(1)+f(2)+f(3)+...+f(n)+n=g(n)f(n)成立的g(n)是?
设f(n)=1+1/2+1/3+...+1/n,是否存在g(n)使f(1)+f(2)+...+f(n-1)=g(n)f(n)-g(n) n>=2的一切自然数成立,求
设f(n)=1/n+1+1/n+2+…+1/2n(n属于N*),那么f(n+1)-f(n)=
设f(n)=1+1/2+1/3+.+1/n 求证f(1)+f(2)+.+(n-1)=n·[f(n)-1]用数学归纳法用数学归纳法证明 设f(n)=1+1/2+1/3+.+1/n 求证f(1)+f(2)+.+(n-1)=n·[f(n)-1]
设f[n]=2+2^4+2^7+2^10+...+2^3n+1,则f[n]=
设f[n]=2+2^4+2^7+2^10+...+2^3n+1,则f[n]=
设f(n)=2+2^4+2^7+...+2^3n+1,则f(n)=?
设函数f(x)满足f(n+1)=[2f(n)+n]/2 (n∈N*) 且f(1)=2求f(20)
设f(n)=1+1/2+1/3+...+1/n,是否存在于自然数n的函数g(n),使等式f(1)+f(2)+...+f(n-1)=g(n).[f(n)-1]
设f(n)=n+f(1)+f(2)+f(3)+……+f(n-1),用数学归纳法证明“n+f(1)+f(2)+f(3)+……
f(1)+f(2)+f(3)+...+f(n)=n/n+1.求f(n)
设f(n)=cos^n α+sin^n α(n属于Z),求证;2f(6)-3f(4)+1=0