求和:Sn=1*2*3+2*3*4+……+n(n+1)(n+2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:18:41
xN0_lH84ē1!C
(D c81Η1WG[o00Y# w/HP!pz^[!S;J=mށ
`[[k`0Էb[fyM-e1\Ы%Uۣ
uRѲB!BZ 0B)/o
T4p&TZcTyβx||_j\u]
K"ǚ&(ph*9A
ʬLA$hxE^#G\UŅ
//>^
求和:Sn=1*2*3+2*3*4+……+n(n+1)(n+2)
求和:Sn=1*2*3+2*3*4+……+n(n+1)(n+2)
求和:Sn=1*2*3+2*3*4+……+n(n+1)(n+2)
Sn=1*2*3+2*3*4+……+n(n+1)(n+2)
=(1³+2³+3³+----+n³)+3(1²+2²+3²+---+n²)+2(1+2+3+----+n)
=n²(n+1)²/4+n(n+1)(2n+1)/2+n(n+1)
=n(n+1)[n(n+1)/4+(2n+1)/2+1)]
=n(n+1)(n+2)(n+3)/4
an=n(n+1)(n+2)
=((n+3)-(n-1))/4*n(n+1)(n+2)
=[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]/4
sn所有的项都如此裂项分解,加起来,可以狂消
Sn=1*2*3+2*3*4+3*4*5+...+n*(n+1)*(n+2)
=1/4{1*2*3*(4-0)+2*3*4*(5-1...
全部展开
an=n(n+1)(n+2)
=((n+3)-(n-1))/4*n(n+1)(n+2)
=[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]/4
sn所有的项都如此裂项分解,加起来,可以狂消
Sn=1*2*3+2*3*4+3*4*5+...+n*(n+1)*(n+2)
=1/4{1*2*3*(4-0)+2*3*4*(5-1)+3*4*5*(6-2)...+n*(n+1)*(n+2)[n+3-(n-1)]}
=[n(n+1)(n+2)(n+3)-0]/4
=n(n+1)(n+2)(n+3)/4
收起
求和Sn=1-2 3-4+
数列求和:sn=1+1/2+1/3+…+1/n,求sn
数列求和 用分组求和及并项法求和 Sn=1^2-2^2+3^2-4^2+…+(-1)^(n-1)·n^2
求和:Sn=1*2*3+2*3*4+……+n(n+1)(n+2)
Sn求和 Sn=1+2x3+3x9+4x27+...+nx3的n-1次方
求和:Sn=1*2+1*2^2+3*2^3+……+n*2^n.
sn=1*n+2(n-1)+3(n-2)+……+n*1 求和
求和:Sn=1*n+2*(n-1)+3*(n-2)+……+n*1
求和Sn=1^2+3^2+5^2+7^2+…+(2n-1)^2
分组求和:Sn=-1+3-5+7+……+[(-1)^n]*(2n-1)
求和Sn=(a-1)+(a^2-2)+(a^3-3)+…+(a^n-n)?谢谢.
求和Sn=1/a+2/a^2+3/a^3+…+n/a^n
求和Sn=(a-1)+(a^2-2)+(a^3-3)+…+(a^n-n)?
求和Sn=(x-1)+(x^2-2)+(x^3-3)+…+(x^n-n)
数列求和:sn=inx+(inx)^3+(lnx)^5+…+(lnx)^2n-1
求和Sn=1+2x+3x^2+4x^3+5x^4……+nx^n-1
求和:Sn=1/2+2/4+3/8+4/8+4/16+……+n/(2n)
求和:Sn=1*3+5*3^2+9*3^3+…+(4n-3)*3^n求最后结果!