过抛物线y^2=4x的焦点做直线L交抛物线与AB两点,若线段AB的中点的横坐标为3,|AB|等于?要具体的解题过程,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 05:45:00
过抛物线y^2=4x的焦点做直线L交抛物线与AB两点,若线段AB的中点的横坐标为3,|AB|等于?要具体的解题过程,
xTKOQ+3ű&\X? tGҐ4QbP @T뀠f̸/`5]t5w{7 WusiŰWYjT3:ڐػc׀[u@y" ^nՂcwiD2JNwX!N'7kniGO#7Ds89Gۮ ˫" t?Y.>cg?Kg53=- zNJA|b7ZtA4^11A _pq.T9'd>vrutU W0{QM}V;ˆaT>HQ)26Ԥ"͋&OEqk5a=)!K 8(_r/(éƂNO&=siPƤȰʳ0G0v9LYzȊ {_LT;N{JҮx{0DMa

过抛物线y^2=4x的焦点做直线L交抛物线与AB两点,若线段AB的中点的横坐标为3,|AB|等于?要具体的解题过程,
过抛物线y^2=4x的焦点做直线L交抛物线与AB两点,若线段AB的中点的横坐标为3,|AB|等于?
要具体的解题过程,

过抛物线y^2=4x的焦点做直线L交抛物线与AB两点,若线段AB的中点的横坐标为3,|AB|等于?要具体的解题过程,
焦点(1,0)
AB中点的横坐标为3,不等于1
所以AB不是垂直于x轴,所以斜率存在
AB是 y-0=k(x-1)
y=kx-k
y^2=4x
所以k^2x^2-2k^2x+k^2=4x
k^2x^2-(2k^2+4)x+k^2=0
x1+x2=(2k^2+4)/k^2
AB中点的横坐标为3
所以(x1+x2)/2=3
(k^2+2)/k^2=3
k^2=1
x1+x2=(2+4)/1=6
准线x=-1
抛物线上的点到焦点距离等于到准线距离
A和B横坐标分别是x1和x2
则A到准线距离=x1-(-1)=x1+1
B到准线距离=x2+1
|AB|=|AF|+|BF|=A到准线距离+B到准线距离
=x1+x2+2
=8

asd764996755 ,你好:
(^2表示平方)
抛物线y^2=4x 焦点(1, 0)
设直线方程为y=k(x-1)代入抛物线方程得
k^2(x-1)^2=4x
k^2(x^2-2x+1)=4x
k^2x^2-(2k^2+4)^2x+k^2=0, 设两个根为x(1),x(2)
则 x(1)+x(2)=(2k^2+4)/k^2, x(1)x...

全部展开

asd764996755 ,你好:
(^2表示平方)
抛物线y^2=4x 焦点(1, 0)
设直线方程为y=k(x-1)代入抛物线方程得
k^2(x-1)^2=4x
k^2(x^2-2x+1)=4x
k^2x^2-(2k^2+4)^2x+k^2=0, 设两个根为x(1),x(2)
则 x(1)+x(2)=(2k^2+4)/k^2, x(1)x(2)=1
AB中点的横坐标为3,则 x(1)+x(2)=6
(2k^2+4)/k^2=6, k^2=1
AB^2=[x(1)-x(2)]^2+[y(1)-y(2)]^2
y(1)-y(2)=k[x(1)-1]-k[x(2)-1]=k[x(1)-x(2)]
AB^2=(k^2+1)[x(1)-x(2)]^2
=(1+1){[x(1)+x(2)]^2-4x(1)x(2)}
=2[6^2-4]
=64
AB=8

收起

根据抛物线定理,得|AB|=8