已知如图,△ABC内接⊙O,AB为直径,线CE⊥AB于F,C是AD的中点,连接BD并延长EC的延长线于点G,连接AD,分别交CE、BC于点P、Q.1.求证:P是△ACQ的外心;2.若tan∠ABC=3/4,CF=8,求CQ的长;3.求证:(FP+PQ)²=F

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:16:45
已知如图,△ABC内接⊙O,AB为直径,线CE⊥AB于F,C是AD的中点,连接BD并延长EC的延长线于点G,连接AD,分别交CE、BC于点P、Q.1.求证:P是△ACQ的外心;2.若tan∠ABC=3/4,CF=8,求CQ的长;3.求证:(FP+PQ)²=F
xVNVj'vȥHINP9 i;J}0K(C i&!$ROR'y2JPb/k& )չfBV\9l.l~ɊQJ>˵ k.Yus8Y|ܚpx)QRyCt~j\Gpfr#5(W kϴOֶTHCavP$gm/NkM}K"Y^ۚA5q[+|?X)YXVa6Է8()[yކ3O{R_i4>MGϤIGb4=Ps>! Ș_ F#H:$/ƴ`*J#!Z}P$ htDSȐ/xXT*<%)M iX8 eq>3Q~Y?mS(/^ךB4wZ>ٴ7daWdUlϨy~gs/+4 좉Is EiG?PǛMP* LBD?W<\Bp/$5A?(&Fda1S372>O5Ed$1oW0k$Y]"b7o}hm) f@ie%͒ea(ݡ|Ż X% T%f!sf\*P3tgSJiQ0T&gd ^ GJVzd×4Ǒ9@,MyfD BzKl6k Vs,_)Cզ~c=Ʊr[[q `JpS~eWQ >3~?'7mzr\4Ȕ3o3'P'ІpYA&WcNsЭO(檅Udr0]7}7+)Z׮dV;m֨a^m({0p& BNUXoTYHB>RNj>PɈW=эHs9}:hh7!OO]^z@%=ͿSGe+V|WqjLUwvN@iLG'j)=k(j7bUz8+9Dr?*\VV8~d

已知如图,△ABC内接⊙O,AB为直径,线CE⊥AB于F,C是AD的中点,连接BD并延长EC的延长线于点G,连接AD,分别交CE、BC于点P、Q.1.求证:P是△ACQ的外心;2.若tan∠ABC=3/4,CF=8,求CQ的长;3.求证:(FP+PQ)²=F
已知如图,△ABC内接⊙O,AB为直径,线CE⊥AB于F,C是AD的中点,连接BD并延长EC的延长线于点G,连接AD,分别交CE、BC于点P、Q.
1.求证:P是△ACQ的外心;
2.若tan∠ABC=3/4,CF=8,求CQ的长;
3.求证:(FP+PQ)²=FP×FG
图片:




PS:前两个问题可以不用答……如果答的话可以追加30分……谢了.

已知如图,△ABC内接⊙O,AB为直径,线CE⊥AB于F,C是AD的中点,连接BD并延长EC的延长线于点G,连接AD,分别交CE、BC于点P、Q.1.求证:P是△ACQ的外心;2.若tan∠ABC=3/4,CF=8,求CQ的长;3.求证:(FP+PQ)²=F
(1)由于AB是⊙O的直径,则∠ACB=90°,只需证明P是Rt△ACQ斜边AQ的中点即可;由垂径定理易知弧AC=弧AE,而C是弧AD的中点,那么弧CD=弧AE,即∠PAC=∠PCA,根据等角的余角相等,还可得到∠AQC=∠PCQ,由此可证得AP=PC=PQ,即P是△ACQ的外心;
(2)由(1)的相等弧可知:∠ABC=∠ACE=∠CAQ,那么它们的正切值也相等;在Rt△CAF中,根据CF的长及∠ACF的正切值,通过解直角三角形可求得AC的长,进而可在Rt△CAQ中,根据∠CAQ的正切值求出CQ的长;
(3)由(1)知:PQ=CP,则所求的乘积式可化为:PC²=FP×FG;在Rt△ACB中,由射影定理得:PC²=AF×FB,因此只需证明AF×FB=FG×FP即可,将上式化成比例式,证线段所在的三角形相似即可,即证Rt△AFP∽Rt△GFB.
(1)证明:∵C是 AD的中点,∴ AC²=CD²,
∴∠CAD=∠ABC
∵AB是⊙O的直径,∴∠ACB=90°.
∴∠CAD+∠AQC=90°
又CE⊥AB,∴∠ABC+∠PCQ=90°
∴∠AQC=∠PCQ
∴在△PCQ中,PC=PQ,
∵CE⊥直径AB,∴ AC²=AE²
∴ AE²=CD²
∴∠CAD=∠ACE.
∴在△APC中,有PA=PC,
∴PA=PC=PQ
∴P是△ACQ的外心.
(2)∵CE⊥直径AB于F,
∴在Rt△BCF中,由tan∠ABC= CF/BF=3/4,CF=8,
得 BF=4/3CF=32/3.
∴由勾股定理,得 BC=CF²+BF²=40/3
∵AB是⊙O的直径,
∴在Rt△ACB中,由tan∠ABC= AC/BC=3/4, BC=40/3
得 AC=3/4BC=10.
易知Rt△ACB∽Rt△QCA,∴AC²=CQ×BC
∴ CQ=AC²/BC=15/2.
(3)证明:∵AB是⊙O的直径,∴∠ACB=90°
∴∠DAB+∠ABD=90°
又CF⊥AB,∴∠ABG+∠G=90°
∴∠DAB=∠G;
∴Rt△AFP∽Rt△GFB,
∴ AFFG=FPBF,即AF×BF=FP×FG
易知Rt△ACF∽Rt△CBF,
∴FG²=AF×BF(或由射影定理得)
∴FC²=PF×FG
由(1),知PC=PQ,∴FP+PQ=FP+PC=FC
∴(FP+PQ)²=FP×FG

已知:如图,△ABC内接于⊙O,AB为⊙O的直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于E,且交AC于如图,△ABC内接于O,AB为直径,∠CBA的平分线BD交AC于点已知:如图,△ABC内接于⊙O,AB为⊙O的直径,∠C 如图,已知△ABC内接于圆O,AE为直径,AD为BC上的高.求证:AB·AC=AE·AD 已知△ABC内接于⊙O,过点A做直线EF 如图,若AB为非直径的弦,且∠CAE=∠B.求证:EF?已知△ABC内接于⊙O,过点A做直线EF 如图,若AB为非直径的弦,且∠CAE=∠B.求证:EF是⊙O的切线 已知△ABC内接于⊙O,过点A做直线EF 如图,若AB为非直径的弦,且∠CAE=∠B.求证:EF?已知△ABC内接于⊙O,过点A做直线EF 如图,若AB为非直径的弦,且∠CAE=∠B.求证:EF是⊙O的切线 如图,三△ABC内接于圆o,若∠B=30°,AB=√3,则圆o的直径为 1、如图,已知三角形ABC中,AB=AC,以AB为直径做圆O交BC与D,过D做DE垂直AC于E,求证:DE是圆O的切线.2、如图,三角形ABC内接于圆O,∠CAE=∠B,求证:AE与圆O相切与A3、如图,圆O是从Rt△ABC的直角边AC为直径 已知,如图,△ABC内接于⊙O,AB是一条非直径的弦,∠CAE=∠B求证,AE是与⊙O相切于A 1.△ABC的三边长分别为6cm,8cm,10cm.则这个三角形的外接圆的面积为_______平方厘米.2.如图,已知△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,DC=3,AB=4根号下2,则⊙O的直径等于__________. 如图,△ABC内接于圆O,AB是直径,BC=4,AC=3,CD平分角ACB,则弦AD长为多少? 如图,三角形ABC,内接于圆心O,AD为三角形的高,AE为圆心O的直径,求证:AB*AC=AD*AE 已知:△ABC内接于圆O,过点A作直线EF.如图,AB是非直径的弦,∠CAE=∠ABC,EF是圆O的切线吗? 已知:如图,△ABC内接于⊙O,AB为直径,弦CF⊥AB于E,C是 弧AD 的中点,连接BD,连接AD,分别交CE、BC于点P、Q.(1)求证:P是AQ的中点;(2)若tan∠ABC=3/4,CF=8,求CQ的长. 如图,△ABC内接于⊙O,AB是直径,BC=8,AC=6,∠ACD=∠BCD,则弦AB,AD长分别为多少?(提示连接BD) 如图,圆O的半径为根号5,△ABC内接于圆O,且AB=AC=4,BD为圆O的直径.求四边形ABCD的面积.图同问的有 如图,三角形ABC内接于圆O,角BAC=120°,AB=AC=4,BD为圆O直径,求BD长. 如图,三角形ABC内接于圆O,AB为直径,角EAC=角B求证AE是圆O的切线 如图,三角形ABC内接于圆O,AB为圆O的直径,角BAC=2∠B,AC=6 已知:如图,△ABC内接于圆O,AB为直径,角CBA的平分线交AC于点F,交○O于点F,交○O于点D,DE⊥AB于点E.【2】求证P是线段AF中点 【3】若圆的半径为5,AF=15/2 求tan∠ABF的值