数列an中,a1=2 n≥2 an=7a(n-1)-3/3a(n-1)+1 求通项公式 n,n-1皆为下标、
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 09:23:41
x){6uӎyOvI45R{ԹH!1
m]tOBP';v=lAF"}Z_`gC3G Տ5ĥBY T SO{0 }3W ԴU@Rd.&hTECb< jg3?_t:eӀQC}DC:(4]BCmMjFFf@.06ԄCD"1T $Aӈ t'J@ g@dq(q $
数列an中,a1=2 n≥2 an=7a(n-1)-3/3a(n-1)+1 求通项公式 n,n-1皆为下标、
数列an中,a1=2 n≥2 an=7a(n-1)-3/3a(n-1)+1 求通项公式 n,n-1皆为下标、
数列an中,a1=2 n≥2 an=7a(n-1)-3/3a(n-1)+1 求通项公式 n,n-1皆为下标、
an=[7a(n-1)-3]/[3a(n-1)+1],
an-1=[7a(n-1)-3]/[3a(n-1)+1]-1,
an-1=[4a(n-1)-4]/[3a(n-1)+1],
取倒数得:
1/ (an-1)= [3a(n-1)+1]/ [4a(n-1)-4],
1/ (an-1)= [3a(n-1)-3+4]/ [4a(n-1)-4],
1/ (an-1)=3/4+4/ [4a(n-1)-4],
1/ (an-1)=3/4+1/ [a(n-1)-1],
这说明数列{1/ (an-1)}是等差数列,首项为1/(a1-1)=1,公差为3/4.
1/ (an-1)=1+(n-1)•3/4,
1/ (an-1)=(3n+1)/4,
an-1=4/(3n+1),
an=(3n+5) /(3n+1).
是an=7a(n-1)-3/[3a(n-1)+1]还是an=[7a(n-1)-3]/[3a(n-1)+1]