如图,平行四边形ABCD,点E,F分别是AB,CD的中点,AF,DE相交于点M,BF,CE相交于点N,求证:MN于EF互相平分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 01:19:47
如图,平行四边形ABCD,点E,F分别是AB,CD的中点,AF,DE相交于点M,BF,CE相交于点N,求证:MN于EF互相平分
xT[O`+w -ve/,--6˒]!:SSfp*-[%+OӉKkW$1AU9Az$G=>ʭ(|#On?鎨J{dʣ>F}׫PBEMVr=OA\|T B>k[=jȨi>qH7E$5n5q>V /y g /\+r\xԽD^ F-Zy\F5̀&`57lD*)Ovt.`6?`$<{g枇r3Tt۩|a=7gjڨ.ev fz>*8sʠOvy%1ռ!iq9+_yu*`slc,ׇ#d~t#M t`?J R&N|Xr ]r*/(zλ`.o^v#ldTJ{ .Nv4[s|8;C5j 0.3LA (MkA9}pBH vRz_]k^tfؓ1'?3

如图,平行四边形ABCD,点E,F分别是AB,CD的中点,AF,DE相交于点M,BF,CE相交于点N,求证:MN于EF互相平分
如图,平行四边形ABCD,点E,F分别是AB,CD的中点,AF,DE相交于点M,BF,CE相交于点N,求证:MN于EF互相平分

如图,平行四边形ABCD,点E,F分别是AB,CD的中点,AF,DE相交于点M,BF,CE相交于点N,求证:MN于EF互相平分
(1):∵四边形ABCD是平行四边形
∴AE‖CF,AB=CD
∵E是AB中点,F是CD中点
∴AE=CF
∴四边形AECF是平行四边形
∴AF‖CE
同理可得DE‖BF
∴四边形FMEN是平行四边形
∴MN于EF互相平分

分析:
要证:MN于EF互相平分
只需证:四边形FMEN是平行四边形就可以
这时候联想一下平行四边形的诸多性质,我们可以尝试证明EN平行且等于MF
证明:由平行四边形ABCD,点E,F分别是AB,CD的中点
得知 AB平行且等于DC AE平行且等于DF
所以四边形AEFD为平行四边形 由平行四边形的性质得知M为AF...

全部展开

分析:
要证:MN于EF互相平分
只需证:四边形FMEN是平行四边形就可以
这时候联想一下平行四边形的诸多性质,我们可以尝试证明EN平行且等于MF
证明:由平行四边形ABCD,点E,F分别是AB,CD的中点
得知 AB平行且等于DC AE平行且等于DF
所以四边形AEFD为平行四边形 由平行四边形的性质得知M为AF的中点
同理 可证N为BF的中点
在三角形ABF中 E为AB的中点 N为BF的中点
由三角形中位线定理可证EN平行且等于AF的二分之一,又M为AF的中点 所以EN平行且等于MF (这显然符合平行四边形的判定定理)
所以四边形MENF为平行四边形
所以MN于EF互相平分
证毕。

收起