如图,在直角梯形ABCD中,∠B=90°,AD‖BC,且AD=4cm,AB=6cm,DC=10cm,若动点P从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm的速度沿CB向B点运动.当Q点到达B点时,动点P、Q同时

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 09:08:39
如图,在直角梯形ABCD中,∠B=90°,AD‖BC,且AD=4cm,AB=6cm,DC=10cm,若动点P从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm的速度沿CB向B点运动.当Q点到达B点时,动点P、Q同时
xX]S+wqF{/MFm˵3ipuJ&- 8bl:53?势jB7M x{>އO3j6[/g;zj^m9>**2LA;,Uƫ-h 0"* ܆s5W^/׿QoaֳouC4A~lXSLƒEqX=IM="XS뜿N?&_1mh/Cϰem-Zoͮ*կa\DG\Q<_o=jNo7Xk>pe%.#pas\tU gm]񩿵)-3\.Q> nBK M&./f ` 8-SMW՞ VZ[w_\ O\hLM)&'shL}i) թiLYW:>aWk~TeSPlC]SbE2Y/.o68+/a$Xkq'J ,H< Pb,$DD+ "`MY۱$,ƀXÿQ6 ;z6zXK|8ѽ| ĻRUb**.vUm*E$6EU)fd%Cou3e*@o$O`anP߳@AISTNt ." ?5gaV21xjO Pi"utPL݂N]PO  @FԒ2 _6N՘ MW/ͪeH,P\N]NKpmE}z eK*ie; . >JBu&j˫Q؊xXظF@c_kO f+ÙnKuIOM_$gy8j L@`g[mƿzD{NRQH.aūBZaoh#\3yo߇k7GTEp b)K 궟k75JzESJ :֋A"{\еH.y~lH"׾.Ry26QyզߨJzr# }}d37_ N[gL<%c kw,1ww_?8NqS0%\ <ϙ'ȶq<7,buJE#:pMtlg|:L,]u Q-y״xB!րX:c]96-I$&vE$V2咍)9l,vf"״esTw+9"pb@۶A&eȶ 9 km5@@b6eĉȺh0 Xd)ĀECeY&D [`ɶdZرbgeX2pǐlLJL,]!;mhBYۄYai#R&g2/Q6~ٽ4~sZ .Ϊ'6OT-VhRAzWM,si^Iԯ?H{c BXА6H0cϿUBDK5L H-]lPiL-[ox='oڦ7Io] epեH cDr81kbpœP p̃'pxkp7Ӯ`i/ؽG ۏ[ivVUꃳr?`ū-.{8E(PG

如图,在直角梯形ABCD中,∠B=90°,AD‖BC,且AD=4cm,AB=6cm,DC=10cm,若动点P从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm的速度沿CB向B点运动.当Q点到达B点时,动点P、Q同时
如图,在直角梯形ABCD中,∠B=90°,AD‖BC,且AD=4cm,AB=6cm,DC=10cm,若动点P从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm的速度沿CB向B点运动.当Q点到达B点时,动点P、Q同时停止运动.设点P、Q同时出发,并运动了t秒.
①直角梯形ABCD的面积为__________cm的平方
②当t=_________秒时,四边形PQCD成为平行四边形?
③当t=_________秒时,AQ=DC
④是否存在t,使得P点在线段DC上且PQ⊥DC?若存在,求出此时t的值,若不存在,说明理由.

如图,在直角梯形ABCD中,∠B=90°,AD‖BC,且AD=4cm,AB=6cm,DC=10cm,若动点P从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm的速度沿CB向B点运动.当Q点到达B点时,动点P、Q同时
(1)作DM⊥BC于点M.则四边形ABMD是平行四边形
∴DM=AB=6cm.
在直角△CDM中,CM= =8cm
∴BC=BM+CM=4+8=12cm
∴直角梯形ABCD的面积为 (AD+BC)•AB=48cm2;
(2)当PD=CQ时,四边形PQCD成为平行四边形
即4-4x=5x
解得x= ;
(3)BC=12-5x
在直角△ABQ中,AB2+BQ2=AQ2
即62+(12-5x)2=102
解得x= ;
(4)存在,.
连接QD,则CP=14-4t,CQ=5t
若QP⊥CD,S△DQC=S△DQC,有CQ×AB=CD×QP
得QP=3t
在RtS△QPC中
QP2+PC2=CQ2,即(3t)2+(14-4t)2=(5t)2
解之得
求得BC=12
CP=14-4t=7<10
CQ=5t= <12
所以,存在t,使得P点在线段DC上,且PQ⊥DC.

解:过D点作DE垂直于BC,交BC于E,可知DE=AB=6,AD=BE=4.
在三角形DEC中,利用勾股定理求出EC=8,则得到BC=8+4=12.
假设存在T,作PQ垂直于DC,连接QD,则AP=4T,CQ=5T.
在三角形QED中,由勾股定理求出:QD^2=6^2+(5T-8)^2;
在三角形QPD中,由勾股定理求出:QP^2=6^2+(5T-8)^2-(4T-...

全部展开

解:过D点作DE垂直于BC,交BC于E,可知DE=AB=6,AD=BE=4.
在三角形DEC中,利用勾股定理求出EC=8,则得到BC=8+4=12.
假设存在T,作PQ垂直于DC,连接QD,则AP=4T,CQ=5T.
在三角形QED中,由勾股定理求出:QD^2=6^2+(5T-8)^2;
在三角形QPD中,由勾股定理求出:QP^2=6^2+(5T-8)^2-(4T-4)^2;
在三角形QPC中,由勾股定理可知:6^2+(5T-8)^2-(4T-4)^2+(14-4T)^2=(5T)^2;
解得T=7/4(秒).
可知当T=7/4秒时,使得P点在线段DC上且PQ垂直DC.

收起

48 5 2 存在 3

hjfghj

考点:直角梯形;勾股定理;平行四边形的判定.
专题:动点型.
分析:(1)作DM⊥BC于点M,在直角△CDM中,根据勾股定理即可求得CM,得到下底边的长,根据梯形面积公式即可求解.
(2)当PD=CQ时,四边形PQCD成为平行四边形.
(3)连接QD,根据S△DQC=S△DQC,即可求解.
(1)作DM⊥BC于点M.则四边形ABMD是平行四边形,
∴...

全部展开

考点:直角梯形;勾股定理;平行四边形的判定.
专题:动点型.
分析:(1)作DM⊥BC于点M,在直角△CDM中,根据勾股定理即可求得CM,得到下底边的长,根据梯形面积公式即可求解.
(2)当PD=CQ时,四边形PQCD成为平行四边形.
(3)连接QD,根据S△DQC=S△DQC,即可求解.
(1)作DM⊥BC于点M.则四边形ABMD是平行四边形,
∴DM=AB=6cm.
在直角△CDM中,CM=CD2-DM2=8cm,
∴BC=BM+CM=4+8=12cm,
∴直角梯形ABCD的面积为 12(AD+BC)•AB=48cm2;
(2)当PD=CQ时,四边形PQCD成为平行四边形,
即4-5x=4x,
解得x=49;
(3)存在,t=74.
连接QD,则CP=14-4t,CQ=5t,
若QP⊥CD,S△DQC=S△DQC,有CQ×AB=CD×QP,即5t×6=10×QP,
得QP=3t,
在Rt△QPC中,
QP2+PC2=CQ2,即(3t)2+(14-4t)2=(5t)2
解之得 t=74,
求得BC=12,
CP=14-4t=7<10,
CQ=5t=354<12,
所以,存在t=74时,使得P点在线段DC上,且PQ⊥DC.
点评:此题主要考查了平行四边形的判定方法,梯形的计算,梯形问题一般通过作高线转化为三角形与平行四边形的问题.

收起

如图,在直角梯形ABCD中, 如图,在直角梯形ABCD中AD∥BC∠ABC=90° 如图在直角梯形ABCD中∠A=90°∠B=120°AD=根号3 如图,在直角梯形ABCD中,AD//BC,∠B=90°,E为AB上一点,且DE平分∠ADC,EC平分∠BCD.求证:S△DEC=1/2S梯形ABCD这是图 如图,在直角梯形ABCD中AD//BC,∠A=90°,对角线BD平分∠ADC若AD=2,AB=4求直角梯形ABCD的面积 如图,在直角梯形ABCD中,AD平行BC,角B=90°,AD=13,BC=16,CD=5, (数学竞赛)16、如图1所示,在直角梯形ABCD中,ABǁDC,∠B=90°.动点P从点B出发,(数学竞赛)16、如图1所示,在直角梯形ABCD中,ABǁDC,∠B=90°. 动点P从点B出发,沿梯形的边由B→C→D→A运动. 设点P运动 如图在四棱锥P—ABCD中已知侧面PAD为等腰直角三角形底面ABCD为直角梯形AB...如图在四棱锥P—ABCD中已知侧面PAD为等腰直角三角形底面ABCD为直角梯形AB‖CD∠ABC=∠APD=90°.侧面PAD⊥底面ABCD.且AB=4.AP 第一题:如图,在梯形ABCD中,AD平行于BC,AD=4,BC=9,AB=6,CD=5,∠B=53°,求∠D的度数.第二题:如图,在梯形ABCD中,AB//CD,M是CD的中点,∠1=∠2,梯形ABCD是等腰梯形吗?说明理由.第三题:如图,在直角梯形ABCD中, 如图,在直角梯形ABCD中,∠1=∠2=45°,梯形高是40厘米,求梯形ABCD的面积. 如图,在直角梯形ABCD中如图,在直角梯形ABCD中,∠D=∠C=90°,AD∥BC,∠DAB的平分线交CD于E,且BE恰好平分∠ABC,则下列结论中错误的是( )A.AE⊥BE B.CE=DE C.AD+DE=BE D.AB=AD+ 如图在梯形ABCD中,∠B=∠C,AD//BC,求证:梯形ABCD是等腰梯形 如图,直角梯形ABCD中,∠B=60°,对角线AC平分∠BAD,上底=1.求梯形的面积. 如图,直角梯形ABCD中,∠ADC=90°,AD∥BC,点E在BC上,点F在AC上,求证:△ADF 如图,在直角梯形ABCD中,AB‖DC,角B=90°,P为BC上一点 (1)若∠APD=90°,找出图中两个相似的三角形, 如图,在直角梯形ABCD中,AB‖DC,角B=90°,P为BC上一点 (1)若∠APD=90°,找出图中两个相似的三角形, 如图,在直角梯形ABCD中,AD//BC,∠A=90°,对角线BD平分∠ADC.求证.△DBC是等腰三角形 如图,在直角梯形ABCD中,AD//BC,∠A=90°,对角线BD平分∠ADC.求证.△DBC是等腰三角形