若1/1*3+1/3*5+1/5*7+……+1/(2n-1)(2n+1)的值为17/35,求n值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 13:06:36
xPAN@,[ 4. FM]iҦnlҀ[R+ibUKƕ yͼ7I$g)Zˏ8.]6b$ky,,]ꕋC\
mqq51YGl3=Ui9{x^|&/?5e[ig+tGnѺ:تOg(ߓj"h8NLQ_U(lA!yb|(f>1jT$?r0Evi7'=
若1/1*3+1/3*5+1/5*7+……+1/(2n-1)(2n+1)的值为17/35,求n值
若1/1*3+1/3*5+1/5*7+……+1/(2n-1)(2n+1)的值为17/35,求n值
若1/1*3+1/3*5+1/5*7+……+1/(2n-1)(2n+1)的值为17/35,求n值
首先要知道
1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)],这样求和就方便求了
1/1*3+1/3*5+1/5*7+……+1/(2n-1)(2n+1)
=1/2[1-1/3+1/3-1/5+1/5-1/7+...+1/(2n-1)-1/(2n+1)]
=1/2[(1-1/(2n+1)]=17/35
所以求得 n=17
1/1*3+1/3*5+1/5*7+……+1/(2n-1)(2n+1)
=[1 - 1/3 + 1/3 - 1/5 + 1/4=5 - 1/7 + ... + 1/(2n -1) - 1/(2n+1)]/2
=[1 - 1/(2n +1)]/2
= n/(2n+1) = 17/35
解得 n = 17
1/1*3+1/3*5+1/5*7……+1/17*19
简算:1/(1*3)+1/(3*5)+1/(5*7)+……+1/(99*101)=
1/1*3+1/3*5+1/5*7……1/97*99=
1×3/1+3×5/1+5×7/1……+49×51/1
1/1×3 1/3×5 1/5×7 …… 1/2009×2010等于多少
1/1*3+1/3*5+1/5*7+……+1/2003*2005结果是什么?
1/1×3+1/3×5+1/5×7+……+1/47×49简便计算
1/1*3+1/3*5+1/5*7+……+1/47*49
1+1/1*3+1/3*5+1/5*7+1/7*9+……+1/99*101=?
1/3+3/5+5/7+……+2007/2009
1/3×1/5+1/5×1/7+1/7×1/9+……+1/97×1/99
1×1/3+1/3×1/5+1/5×1/7+……+1/99×1/101
1/3*5+1/5*7+1/7*9+……1/97*99
(+1)+(-3)+(+5)+(-7)+…+(2005)+(-2007)
1+3+5+7+… +49=
1+3+5+7+9+……+(2n-1)
计算1/1×3+1/3×5+1/5×7+…+1/1997×1999
计算:1/1*3+1/3*5+1/5*7+…+1/99*101.怎么来?