数列an满足a1=1/2,a1+a2+a3……an=n^2an,则an

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 00:22:44
数列an满足a1=1/2,a1+a2+a3……an=n^2an,则an
xRQj@JPbbf!^@ JiiGŏ .Wɪm,~vg޼ɼ}^Dzfc"(wme& /Kr@CUMiw ``ejJ eɀ˭[-|຤׽u]nRL-j kt#CRM nPg$j D7'ڜ &SU&}4vKg;2lvO߰ ]1i"泷A4CXS$ѫK;VFȌڽju(".IBnx'/n-C}7#C\-+

数列an满足a1=1/2,a1+a2+a3……an=n^2an,则an
数列an满足a1=1/2,a1+a2+a3……an=n^2an,则an

数列an满足a1=1/2,a1+a2+a3……an=n^2an,则an
s(n)=n^2a(n)
a(n+1)=s(n+1)-s(n)=(n+1)^2a(n+1)-n^2a(n)
n(n+2)a(n+1)=n^2a(n)
(n+2)a(n+1)=na(n)
(n+2)(n+1)a(n+1)=(n+1)na(n)
(n+2)(n+1)a(n+1)=(n+1)na(n)=...=(1+1)*1*a(1)=1
a(n)=1/[n(n+1)] = 1/n - 1/(n+1)

a1+a2+a3……a(n+1)=(n+1)^2an+1=n²an+a(n+1)得
(n+2)*a(n+1)=n*an即a(n+1)/an=n/(n+2)最后累乘得an=1/[(n+1)*n]

an=1/[(n+1)*n]

an=1/(n^2+n)

n^2an是n的2次方乘以数列的第n项an吗?如果是,可以用递推公式表述:
A1=1/2,An=[(n-1)^2]An-1 /[n^2-1].