已知f(x)的值域为[3/8,4/9],求函数y=f(x)+√1-2f(x)的最值 .3.)已知f(x)的值域为[3/8,4/9],求函数y=f(x)+√(1-2f(x))的最值(2)求函数y=5-x+√(3x-1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 02:00:48
已知f(x)的值域为[3/8,4/9],求函数y=f(x)+√1-2f(x)的最值 .3.)已知f(x)的值域为[3/8,4/9],求函数y=f(x)+√(1-2f(x))的最值(2)求函数y=5-x+√(3x-1)
xVMOW+^ڱǓőlD7AU",+ ;Q1L  )ΌW,*RE#UBhf{Ν;-/gg?p*kdiu?FhhA}"dwVn'Ӫh~&R|Hv/wT\CK HB_ߦdt_+^]^}k5Y=b=+Dg!%.L1v <(tP! /_{d㥻'̉^\_q=D:v?عCJBriE%<)[+sL t (}̉'pgNdIjDc:T&gem &eτ)rS#2)0 nIsPt>^fLm_&4&nZ wƍY bߘ~|n6E{|?RNVqLHĩzIظf皬cnޘRy$؍:b)*ss;%=xj_@0s~κ&q:6s{r.*;.Gj'HaRymf5S+ K^od9t M'fdnvX6sS6&LҬ: Nw'}I CT?.fǼϓ#i33:y[|=!zf+A 7fi@!|UO)}奂9k9=9: rux3$=Gp"6͵$}:IRgo2vE-;F f ߯en^LCb^Bše3h `5@_bJD }I@ ۠AO_*)v?,00թnқ>K@:Ad\aխON$mi/GlAMƗ9I#)CvwކEo͊'05vko

已知f(x)的值域为[3/8,4/9],求函数y=f(x)+√1-2f(x)的最值 .3.)已知f(x)的值域为[3/8,4/9],求函数y=f(x)+√(1-2f(x))的最值(2)求函数y=5-x+√(3x-1)
已知f(x)的值域为[3/8,4/9],求函数y=f(x)+√1-2f(x)的最值 .
3.)已知f(x)的值域为[3/8,4/9],求函数y=f(x)+√(1-2f(x))的最值
(2)求函数y=5-x+√(3x-1)

已知f(x)的值域为[3/8,4/9],求函数y=f(x)+√1-2f(x)的最值 .3.)已知f(x)的值域为[3/8,4/9],求函数y=f(x)+√(1-2f(x))的最值(2)求函数y=5-x+√(3x-1)
1,已知f(x)的值域为[3/8,4/9],那么-2f(x)的值域为[-8/9,-3/4],那么1-2f(x)的值域为[1/9,1/4],那么)√(1-2f(x))的值域为[1/3,1/2]
y=f(x)+√(1-2f(x))的值域为[17/24,17/18]
所以Y的最大值是17/18
所以Y的最小值是17/24
2,应该要换元,
原式,3Y=15-3X+3√(3x-1)
3Y=-(3X-1)+14+3√(3x-1)
再把√(3x-1)设为t代入原函数...再漫漫弄吧
我都很久没有做高中数学题了.可能是错的.建议多研究下

(1)令1-2f(x)=t,则f(x)=(1-t*t)/2。(t的范围是[1/3 1/2]
原式可化为:y=(1-t*t)/2+t
依据二元函数的图像(此处无法画)
即可求得 y最小值1/3,最大值11/8.
(2)做法与第一题类似,具体解说我就不写了,孩子学习数学,还得多多独立思考,多做多练。

将y=f(x)+√1-2f(x),中的f(x)=t,则y=t+Sqrt(1-2t),t的取值范围就是f(x)可能的定义域,因为负数不能开平方,所以,1-2t>=0,解得t<=1/2,将t<=1/2与t属于[3/8,4/9],取交集,得到f(x)的定义域为【3/8,4/9】,函数y=f(x)+√1-2f(x)在其定义域的端点取值为y=3/8+Sqrt(1-2*3/8)=7/8,y=4/9+Sqrt(...

全部展开

将y=f(x)+√1-2f(x),中的f(x)=t,则y=t+Sqrt(1-2t),t的取值范围就是f(x)可能的定义域,因为负数不能开平方,所以,1-2t>=0,解得t<=1/2,将t<=1/2与t属于[3/8,4/9],取交集,得到f(x)的定义域为【3/8,4/9】,函数y=f(x)+√1-2f(x)在其定义域的端点取值为y=3/8+Sqrt(1-2*3/8)=7/8,y=4/9+Sqrt(1-2*4/9)=7/9,然后再求y=t+Sqrt(1-2t)在【3/8,4/9】上的极值,将y=t+Sqrt(1-2t)变形为(y-t)^2=1-2t,继续(t+1)^2+y^2=2,这是一个圆心在(-1,0),半径为(根2)的圆,由集合图像可以看出,当x取-1,时y有极值(-根2),或者(根2),但是-1不在【3/8,4/9】中,所以函数只有在端点取得最值,最小值为7/9,最大值为7/8.完毕。
第二题,方法与第一题雷同。

收起

已知f(x)的值域为[3/8,4/9].求函数y=f(x)+根号1+2f(x)的值域. 已知F(X)的值域为[3/8,4/9],求y=f(x)+根号下1-2f(x)的值域 函数值域题目1、若f(x)的值域为[1/2,5] 求g(x)=f(x)+2/f(x) -3的值域2、已知函数f(x)的值域为[3/8,4/9],求g(x)=f(x)+根号(1-2f(x))的值域 已知函数y=f(x)的值域是【3/8,4/9】,则函数y=f(x-2)+1的值域为 已知f(x)的定义域为[3/8,4/9],g(x)=f(x)+√1-2f(x),试求y=f(x)的值域题错了。试求y=g(x)的值域 已知f(x)的值域为[3/8,4/9],求y=g(x)=f(x)+√1-2f(x)的值域p.s:1-2f(x)是在根号下. 已知f(x)的值域是【3/8,4/9】,g(x)=f(x)+√1-2f(x),试求y=g(x)的值域 已知函数f(x)的值域为3/8≤x≤4/9,试求函数g(x)=f(x)+根号下1-2f(x)的值域 已知f(x)的值域为【3/8,4/9】,求y=g(x)=f(x)+根号下[1-2f(x)]的值域,求详解, 已知函数f(x)的值域为[3/8,4/9],求函数g(x)=f(x)+根号下1-2f(x)的值域,务必要详细, 已知f(x)的值域为[3/8,4/9],求函数y=f(x)+√1-2f(x)的最值 .3.)已知f(x)的值域为[3/8,4/9],求函数y=f(x)+√(1-2f(x))的最值(2)求函数y=5-x+√(3x-1) 已知f(x)的值域为[3/8,4/9],求函数y=f(x)+√1-2f(x)的最值 .3.)已知f(x)的值域为[3/8,4/9],求函数y=f(x)+√(1-2f(x))的最值 (2)求函数y=5-x+√(3x-1) 已知f(x)的值域是 〔3/8 ,4/9〕,试求y=f(x)+根号下1-2f(x)的值域 已知函数f(x)的值域是【3/8,4/9】,试求y=f(x)+根号(1-2f(x))的值域 已知函数f(x)的值域是【8分之3,9分之4】,求函数y=f(x)+根号下1-2f(x)的值域. 已知函数f(x)的值域[3/8,9/4 ],试求y=f(x)+根号〔1-2f(x)〕 的值域 已知f(x)的值域为3/8≤y≤4/9 求y=f(x)+根号下【1-2f(x)】的值域 已知函数f(x)的值域是[3/8,4/9],求函数g(x)=f(x)+√(1-2f(x))的值域为什么要换元去做,而不可以直接把F(X)的值域根据方程算,为什么是错的