已知函数f(x)=loga(a^x-1)(a>0,a≠1).讨论函数f(x)的单调性,并用定义证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 21:31:17
已知函数f(x)=loga(a^x-1)(a>0,a≠1).讨论函数f(x)的单调性,并用定义证明
xSn@~=kH\ EGWP(T*0]"z9 v]bog,ɔ)Ŋy{h*恵jX _Ys9н5wq'حr,AxF^jQM 4)%K)%H<_H5z%QY&EELQ)`MgT?EU2 `WU%tYTG4#>kfh0Cm  p{)iPR(xn-&6yT_ UF'XDy\3VzO̾ÞrI,]7b%,hi81l+̛||fWPT\.YGYg9rZMPo˦s#־0x<м39pWp|+\U"W'.T t7qvʂV`Tm

已知函数f(x)=loga(a^x-1)(a>0,a≠1).讨论函数f(x)的单调性,并用定义证明
已知函数f(x)=loga(a^x-1)(a>0,a≠1).讨论函数f(x)的单调性,并用定义证明

已知函数f(x)=loga(a^x-1)(a>0,a≠1).讨论函数f(x)的单调性,并用定义证明
a>1,
定义域a^x>1=a^0,x>0
则m>n>0
f(m)-f(n)=loga[(a^m-1)/(a^n-1)]
a>1,a^x是增函数,a^m>a^n,所以a^m-1>a^n-1
又n>0,所以a^m-1>a^n-1>0
所以(a^m-1)/(a^n-1)>1
a>1,所以loga[(a^m-1)/(a^n-1)]>0
所以m>n>0时
f(m)>f(n)
增函数
0

a>1,内函数和外函数都是增函数
所以原函数就是增函数
0<a<1,内函数外函数都是减函数
所以原函数还是增函数
函数f(x)=loga(a^x-1)为增函数

已知函数f(x)=loga(a^x-1)(a>0,a≠1).讨论函数f(x)的单调性,并用定义证明
提供思路
设 在R上取 x1,x2,且 x2>x1
当 0 f(x2)-f(x1)
然后比较结果 f(x2)-f(x1)>0 即表示为单调递增
f(x2)-f(x1)<0 即表示为单调递...

全部展开

已知函数f(x)=loga(a^x-1)(a>0,a≠1).讨论函数f(x)的单调性,并用定义证明
提供思路
设 在R上取 x1,x2,且 x2>x1
当 0 f(x2)-f(x1)
然后比较结果 f(x2)-f(x1)>0 即表示为单调递增
f(x2)-f(x1)<0 即表示为单调递减
当 a>1时, 把x1,x2代入得到
f(x2)-f(x1)
然后比较结果 f(x2)-f(x1)>0 即表示为单调递增
f(x2)-f(x1)<0 即表示为单调递减
然后综合起来 一定是单调递增的

收起